Объяснение:
По формулам sin 7x * sin x = 1/2*[cos(7x - x) - cos(7x + x)] = 1/2*(cos 6x - cos 8x) sin 3x * sin 5x = 1/2*[cos(5x - 3x) - cos(5x + 3x)] = 1/2*(cos 2x - cos 8x) По уравнению cos 6x - cos 8x = cos 2x - cos 8x cos 6x = cos 2x По формуле тройного аргумента cos 3a = 4cos^3 a - 3cos a cos 6x = 4cos^3 2x - 3cos 2x = cos 2x 1) cos 2x = 0 2x = Pi/2 + Pi*k x = Pi/4 + Pi/2*k 2)4cos^2 2x - 3 = 1 cos^2 2x = 1 cos 2x = -1 2x = Pi + 2Pi*k x = Pi/2 + Pi*k 3) cos 2x = 1 2x = 2Pi*k x = Pi*k ответ: x1 = Pi/4 + Pi/2*k, x2 = Pi/2 + Pi*k, x3 = Pi*k
1.
Тут легко выразить x из первого уравнения. Нужно лишь перенести 2y
x = -2y
Теперь подставляем это во второе
5(-2y) + y = -18
-9y = -18
y = 2
Помним, что x = -2y ===> x = -4
Для самопроверки можно подставить в первое, в других номерах делать не буду, но тебе советую (не конкретно в этих, а вообще)
-4 + 4 = 0 Все верно
x = -4; y = 2
2.
Здесь тоже легко выразить x из первого.
2x = 10 + 5y
Подставляем в первое, умножаем не на 4, а на 2, т.к. у нас уже 2x.
2(10 + 5y) - y = 2
20 + 10y - y = 2
18 = -9y
y = -2
Подставляем в 2x = 10 + 5y > 2x = 10 - 10 ===> x = 0
x = 0; y = -2
3. Тут конечно тоже можно выразить x и т.д., но ради разнообразия решим через алгебраическое сложение уравнений. Складываем все, что левее равно в первом, с тем, что левее равно во втором, ну и с тем, что правее соответственно. Знаки не меняем!
x - 2y + y - x = 1 - 2
-y = -1
y = 1
Теперь ищем x из первого.
x - 2 = 1
x = 3; y = 1
4. Тут тоже подойдет метод алгебраического сложения. Вообще, в этом номере все можно решить, выражая одну из переменных через метод алг-го сложения удобнее. Есть системы, где выразить переменную сложнее. Часто именно сложением или вычитание (это все метод алгебраического сложения) решить.
x + y + x - y = -3 - 1
2x = -4
x = -2
Подставляем в первое.
-2 + y = -3
y = - 1
x = -2; y = -1
Все. Если будут во пиши.
p.s. Отметь, как лучший, если не сложно ;)
4=2*1*(3-1)
Гипотеза индукции. Пусть при
т.е. выполняется равенство
Индукционный переход. Докажем что тогда справедливо равенство для
Т.е. что верно равенство
используя гипотезу индукции
используем формулу разности квадратов
По принципу математической индукции утверждение верно для любого натурального n