I=U/R
U=I*R
1) Выразим каждый множитель как одночлен в квадрате.
0,01 – это 0,1²
a⁶ - это (а3)2
b⁴ - это (b2)2
Получается, что 0,01a⁶b⁴ = 0,1² × (а3)2 × (b2)2 = (0,1а3b2)2
ответ: 0,01a⁶b⁴ = (0,1а3b2)2
2) Выразим каждый множитель как одночлен в квадрате.
9 = 32
b⁴ = (b2)2
c⁸ = (c4)2
Получается, что 9b⁴c⁸ = 32 × (b2)2 × (c4)2 = (3b2c4)2
ответ: 9b⁴c⁸ = (3b2c4)2
3) Выразим каждый множитель как одночлен в квадрате.
100 = 102
p² = p2
q⁶ = (q3)2
Получается, что 100p²q⁶ = 102 × p2 × (q3)2 = (10pq3)2
ответ: 100p²q⁶ = (10pq3)2
1) Найдем первые члены последовательности
b(1)=1^2-4=-3
b(2)=2^2-4=0
b(3)=3^2-4=5
b(4)=4^2-4=12
b(5)=5^2-4=21
последовательность возроастающая, значит следующие члены будут большими за 21
значит нам подходят только -3, 0, 21
можно было иначе -3=n^2-4 откуда натуральное n равно 1
6=n^2-4 такого натурального n нет
0=n^2-4 откуда натуральное n равно 2
21=n^2-4 откуда натуральное n равно 5
второй вариант поиска более верный, но у нас небольшие числа можно искать и по первому)
2) знаменатель равен b2\b1 или b3\b2 и так далее ,то есть отношению следующего члена прогрессии к предыдущему
b1=3 b2=1 b3=1\3 ...
значит он равен 1\3
ответ г)1/3
3) ищем знаменатель 1\3 : 1\6 =2 q=b2\b1
значит х =1\3 *2=2\3 b3=b2*q
ответ: 2\3
U=IR