Чтобы найти корни многочлена, необходимо приравнять его к нулю и решить уравнение.
а) x²+1
x²+1 = 0, нет решений т.к. x²+1 > 0, как сумма неотрицательного (x²) и положительного (1) чисел.
b) x³-27
x³-27 = 0;
x³ = 27 = 3³;
x = 3.
c) -2y⁶-1
-2y⁶-1 = 0;
2y⁶+1 = 0, нет решений т.к. 2y⁶+1 > 0, как сумма неотрицательного (2y⁶) и положительного (1) чисел.
d) y⁴+3y²+7
y⁴+3y²+7 = 0;
Пусть y²=b, тогда перепишем уравнение: b²+3b+7=0 (1);
D = 3²-4·1·7 = 9-28 = -19 < 0;
Если дискриминант отрицателен, то квадратное уравнение не имеет решений. Уравнение (1) решений не имеет, поэтому нет такого у, удовлетворяющего уравнению y⁴+3y²+7 = 0.
"останется хотя бы 3 патрона"-это может остаться 3 патрона или 4 патрона или 5 патронов вероятность "попасть в мишень"=0,7 вероятность "не попасть в мишень"=1-0,7=0,3 останется три патрона-это значит стрелок 2 раза не попал, а на третий раз попал, вероятность Р₁=0,3·0,3·0,7=0,063 останется четыре патрона-это значит стрелок первый раз не попал, а второй попал, вероятность Р₂=0,3·0,7=0,21 останется пять патронов-это значит стрелок попал с первого раза Р₃=0,7 события несовместные Р=Р₁+Р₂+Р₃ Р=0,063+0,21+0,7=0,973
Пусть числа a,b,c составляют геометрическую прогрессию, тогда b²=ac увеличим второе число на 8,тогда a,b+8,c составляют арифметическую прогрессию ⇒ 2(b+8)=a+c увеличим третье число на 64 ,тогда a,b+8,c+64 составляют геометрическую прогрессию ⇒ (b+8)²=a(c+64)
имеем систему из трех уравнений с тремя неизвестными
ответ: a) нет; b) да; c) нет; d) нет.
Чтобы найти корни многочлена, необходимо приравнять его к нулю и решить уравнение.
а) x²+1x²+1 = 0, нет решений т.к. x²+1 > 0, как сумма неотрицательного (x²) и положительного (1) чисел.
b) x³-27x³-27 = 0;
x³ = 27 = 3³;
x = 3.
c) -2y⁶-1-2y⁶-1 = 0;
2y⁶+1 = 0, нет решений т.к. 2y⁶+1 > 0, как сумма неотрицательного (2y⁶) и положительного (1) чисел.
d) y⁴+3y²+7y⁴+3y²+7 = 0;
Пусть y²=b, тогда перепишем уравнение: b²+3b+7=0 (1);
D = 3²-4·1·7 = 9-28 = -19 < 0;
Если дискриминант отрицателен, то квадратное уравнение не имеет решений. Уравнение (1) решений не имеет, поэтому нет такого у, удовлетворяющего уравнению y⁴+3y²+7 = 0.