44 , все, что есть. решите . 1. выражения. 1). a+6/a + a/6-a 2). 4/b^2-3b - b/3b-9 2. докажите, что при всех допустимых значениях "х" значение выражения 7x-8/5x+5 + 4-5x/3x+3 не зависит от "х". 3. выражение
1) Исследуем функцию по общему виду. а) Область определения: x∈R б) Вертикальных асимптот нет, функция везде определена. в) Пересечение с осями. с Ох: y=0 x⁴ -10x₂ +9 =0 Замена: x² = t t² - 10t +9 =0 t₁+t₂ = 10 t₁*t₂ = 9 t₁ = 9 t₂ = 1 x₁₂ = √9 = +-3 x₃₄ = √1 = +-1 Пересечение Oy: x=0 y(0) = 0⁴ + 10*0² + 9= 9 г) Функция четная д) Асимптоты наклонные: y = kx+b k = ∞ Наклонных асимптот нет
2) Исследуем функцию с первой производной. y' = (x⁴ -10x² +9)' = 4x³ -20x Приравняем производную к нулю: 4x³ -20x = 0 4x(x² - 5) = 0 x = 0 или x =+-√5 Посмотрим как ведет себя функция на этих отрезках.(см. №1) x = +-√5 - точка минимума, ymin = -16 x = 0 - точка максимума y max = 9
3) Исследуем функцию с второй производной. y'' = 12x² - 20 Приравняем к 0 12x²-20 = 0 x = +-√20/12 Функция знак не меняет - значит точек перегиба нет. 4) Сам график. см №2
1). (a+6)/a + a/(6-a)=(36-a²+a²)/a(6-a)=36/(6a-a²)
2). 4/(b^2-3b) - b/(3b-9)=4/b(b-3) -b/3(b-3)=(12-b²)/3b(b-3)
2. Докажите, что при всех допустимых значениях "х" значение выражения
(7x-8)/(5x+5) + (4-5x)/(3x+3) не зависит от "х".
(7x-8)/(5x+5) + (4-5x)/(3x+3)=(7x-8)/5(x+1) + (4-5x)/3(x+1)=(21x-24+20-25x)/15(x+1)=
=(-4-4x)/15(x+1)=-4(1+x)/15(x+1)==-4/15
3. Упростите выражение y-3/4y+y^2 - y-4/y^2-16.
y-3/4y+y^2 - y-4/y^2-16=(y-3)/y(4+y) - (y-4)/(y+4)(y-4)=
=(y²-4y-3y+12-y²+4y)/y(4+y)(y-4)=(-3y+12)/y(4+y)(y-4)=
=-3(y-4)/y(4+y)(y-4)=-3/(4+y)