№1 а) 5x-8.5=0 б)8x-7.5=6x+1.5
5x=0+8.5 8x-6x=1.5+7.5
5x=8.5 2x=9
x=8.5/5 x=9/2
x=1,7 x=4.5
в)4x-(9x-6)=46 г)(x-2.5)*(5+x)=0
4x-9x+6=46 x-2.5*5+x=0
-5x=46-6 2x=12.5
x=40/-5 x=12.5/2
x=-8 x=6.25
д) 2х/5=(х-3)/2 е) 7х-(х+3)=3(2х-1)
2x-x=-3/2*5 нет корней
x=-7.5
№2 х*2+8=6х
2х-6х=-8
-4х=-8
х=-8/-4
х=2
№3
1) х+2х+х+80=3080
4х+80=3080
4х=3080-80
х=3000/4
х=750 ( уч) в первой школе
2)750+80=830 (уч) во второй школе
3)750*2=1500 ( уч) в третьей школе
№4 х+25=2х-16
х-2х=-16-25
х=41 (т) в первом магазине первоначально
41*2=82 (т) во втором магазине первончально
Дана система уравнений:
{9x^2-42xy+52y^2-6y=265
{3x-7y-11=0.
Заданная система решается методом подстановки.
Из второго уравнения находим у = (3/7)х - (11/7) и подставляем вместо переменной у в первое уравнение.
Вычисление довольно громоздкое.
Результат: х1 = (-31/3), у1 = -6.
х2 = (67/3), у2 = 8.
Первое уравнение - это эллипс, его уравнение линии 2-го порядка задано общим видом Ax² + 2Bx + Cy² + 2Dx + 2Ey + F = 0.
Продольная ось повёрнута от оси Ох на угол, определяемый по формуле tg(2α) = 2B/(A - C) = -42/(9 - 52) = 0,976744186 .
Угол поворота равен 22,163 градуса.
Угол наклона прямой, пересекающей эллипс равен arc tg(3/7) = 23,19859051 градуса.
Во вложении дан график эллипса и прямой.
12*3=36 - вторая бриг
12+36-22=48-22=26 - третья бриг