5
2^(x^2-8x+19) > 16
2^(x^2-8x+19) > 2^4
так как основание больше 1 то знак не меняем
x^2-8x+19 > 4
x^2-8x+15 > 0
D = 64 - 60 = 4
x12=(8+-2)/2=5 3
(x-3)(x-5) > 0
метод интервалов
(3) (5)
x ∈(-∞ 3) U (5 + ∞)
7
(x²-8x+16)^(x-6) < 1
((x-4)^2)^(x-6) < (x-4)^0
проверим когда основание равно 0 x=4
степень (х-6)<0 значит х=4 не корень
так как основание слева всегда больше 0 то рассмотрим 2 случае
1. основание >0 и <1
x∈(3 5) тогда
2(x-6)>0
x>6 решений нет
2 основание больше 1
x∈(-∞ 3) U (5 +∞)
2(x-6) < 0
x<6 решение x∈(-∞ 3) U ( 5 6)
Jответ x∈(-∞ 3) U ( 5 6)
Решите уравнение:
(2x²−3x)²+ 7*(2x²−3x) −1 8=0
решение : замена t =2x²−3x
t² + 7t - 18 = 0 (квадратное уравнение D=7² - 4*1*(-18) =11 ², t =(-9±11)/2, но ...) ⇔ t² - 2t +9t - 18 =0 ⇔ t (t - 2)+ 9(t -2) =(t -2)(t+9) =0 ⇒ t = - 9 или t =2.
a) 2x²−3x = -9 ⇔2x²− 3x+ 9 =0 ; D =(-3)² - 4*2*9 = -63 < 0 ⇒нет решений
б) 2x²−3x =2 ⇔ 2x²−3x -2 =0 }} D =(-3)² -4*2*(-2) =5² ⇔ x =(3 ±5) 4 .
* * * По т. Виета 2x²−3x -2 =0 ⇔ x²−(3/2)x -1=0 ⇔ x²−(2 -1/2)*x +2 *(-1/2) =0 * * *
x₁ = -1/2 ; x₂ =(3+5)/5 =2.
ответ : - 1/2 ; 2 .
12x-12x=1-1
0=0
а в 1ом точно правильно написано?