М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1234554321123456
1234554321123456
24.11.2021 17:37 •  Алгебра

Обьясните тему: вычисление значения тригонометрических функций угла вэтта

👇
Ответ:
vilkinakarina
vilkinakarina
24.11.2021
Тригонометри́ческие фу́нкции —элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов пригипотенузе (или, что равнозначно, зависимость хорд и высот отцентрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям относятся:

прямые тригонометрические функциисинус ()косинус ()производные тригонометрические функциитангенс ()котангенс ()другие тригонометрические функциисеканс ()косеканс ()

В западной литературе тангенс, котангенс и косеканс часто обозначаются .

Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции(версинус и т.д.), а также обратные тригонометрические функции(арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.

Тригонометрические функции являются периодическимифункциями с периодами для синуса, косинуса, секанса и косеканса, и  для тангенса и котангенса.
Синус и косинус вещественного аргумента — периодическиенепрерывные и функции. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и  на области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках , а котангенс и косеканс — в точках .
Тригонометрические функции любого угла можно свести к тригонометрическим функциям острого угла, используя их периодичность и так называемыеформулы приведения. Значения тригонометрических функций острых углов приводят в специальных таблицах. Графики тригонометрических функций показаны на рис. 1.
4,7(72 оценок)
Открыть все ответы
Ответ:
Amina21777
Amina21777
24.11.2021
  если их раздали по одной, то в классе 120 человек, если по 2, то 120: 2=60 человек, если по 3, то 120: 3=40 человек, если по 4, то 120: 4=30, но по условию - должно быть более 30. значит, 120 или 60 или 40. 2. рассмотрим конфеты. если 120 человек, то 280: 120=2,3 - число не натуральное, чего быть не может (конфеты ломать не будут), 120 - не подходит. если 60 человек, то, аналогично, не подходит. если 40 человек, то 280: 40=7 - конфет. подходит. 3. рассмотрим орехи. 320: 40=8 - орехов. подходит. вывод: 40 учеников в первом классе.
4,7(56 оценок)
Ответ:
Фарида120107
Фарида120107
24.11.2021
№1. 320 = 2 * 2 * 2 * 2 * 2 * 2 * 5 120 = 2 * 2 * 2 * 3 * 5 280 = 2 * 2 * 2 * 5 * 7 нод (320; 120 и 280) = 2 * 2 * 2 * 5 = 40 - наибольший общий делитель 40  > 30 - соответствует условию 320 : 40 = 8 орехов 120 : 40  = 3 шоколадки 280 : 40 = 7 конфет ответ: 40 учащихся в классе. № 2. 8 = 2 * 2 * 2                 12 = 2 * 2 * 3 нок (8 и 12) = 2 * 2 * 2 * 3 = 24 - наименьшее общее кратное 80 < x < 100 - условие 100 : 24 = 4 (ост. 4)    24 * 4 = 96  ответ: было 96 экскурсантов.
4,8(29 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ