Обозначим через аi число очков, выбитых первым стрелком при i-м выстреле, а через bi число очков, выбитых вторым стрелком при i-м выстреле.
Тогда из условий задачи следует:
а1+а2+а3= b1+b2+b3, (1)
а3+а4+а5= 3(b3+b4+b5), (2)
Из приведенных попаданий заключаем, что равенство (2) может выполняться, если b1, b2, b3, минимальные по числу очков попадания, а а3, а4, а5 максимальные и сумма а3+а4+а5 кратна трем. Отсюда видно, что b3, b4, b5, это числа 2, 3 и 4, а а3, а4, а5 это числа 10, 9, 8. Далее видим, что первыми четырьмя выстрелами (каждый стрелок сделал по два) они выбили очки: 9, 8, 5, 4. Используем условие (1). Очевидно, что при этом сумма а1+а2 должна быть наименьшей при ее выборе из четырех чисел (9, 8, 5, 4), а b1+b2 наибольший при выборе ее из тех же чисел. Это возможно при a=5, a2=4, a3=10, b1=9, b2=8, b3=2.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.