М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alina1749
alina1749
14.03.2023 20:59 •  Алгебра

Решите неравенство: 11< 7-10х/3 < 19 заранее ! )

👇
Ответ:
11< 7-10х/3 < 19
33<7-10x<57
26<-10x<50
-5<x<-2,6
x∈(-5;-2,6)
4,8(54 оценок)
Открыть все ответы
Ответ:

На протяжении всей истории математики[⇨] представление о и допустимых методах доказательства существенно менялось, в основном, в сторону большей формализации и бо́льших ограничений. Ключевой вехой в вопросе формализации доказательства стало создание математической логики[⇨] в XIX веке и формализация её средствами основных техник доказательства. В XX веке построена теория доказательств — теория, изучающая доказательство как математический объект[⇨]. С появлением во второй половине XX века компьютеров особое значение получило применение методов математического доказательства для проверки и синтеза программ[⇨], и даже было установлено структурное соответствие между компьютерными программами и математическими доказательствами (соответствие Карри — Ховарда[⇨]), на основе которого созданы средства автоматического доказательства[⇨].

Объяснение:

Основные приёмы, используемые при построении доказательств: прямое доказательство[⇨], математическая индукция и её обобщения[⇨], доказательство от противного[⇨], контрапозиция[⇨], построение[⇨], перебор[⇨], установление биекции[⇨], двойной счёт[⇨]; в приложениях в качестве математических доказательств привлекаются также методы, не дающие формального доказательства, но обеспечивающие практическую применимость результата[⇨] — вероятностные, статистические, приближённые. В зависимости от раздела математики, используемого формализма или математической школы не все методы могут приниматься безоговорочно, в частности, конструктивное доказательство[⇨] предполагает серьёзные ограничения.

4,6(74 оценок)
Ответ:
График функции y=-x²+6x-11 представляет собой параболу ветви , которой направлены вниз. Определим имеются ли точки пересечения с остью ОХ, для этого найдём корни уравнения
-x²+6x-11=0
D=6²-4*(-1)*(-11)=36-44=-8<0 ⇒ уравнение не имеет действительных корней, то есть нет точек пересечения с осью ОХ.
Следовательно график функции расположен ниже оси ОХ, а так как это парабола ветви которой направлены вниз, то ближайшей точкой к оси абсцисс является вершина параболы.
Вершина параболы находится по формуле
x=-b/2a=-6/-2=3 - абсцисса вершины, теперь найдём ординату
y=-3²+6*3-11=-9+18-11=-2

ответ: ближайшая к оси абсцисс точка с координатами (3;-2). 
4,6(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ