Объяснение:
1. При каких условиях число a> b? Если a-b >0 т.е положительна разность Как это обозначается? a-b >0
2. Покажите знаки строгого и нестрогого неравенств. ≤ ≥
3. Какие свойства числовых неравенств вы знаете?
Если a>b и b>c , то a>c .
Если a>b , то a+c>b+c .
Если a>b и k>0 , то ak>bk .
Если a>b и k<0 , то ak<bk .
4. Что вы понимаете под доказательством неравенства?
Преобразование частей по правилам к очевидному результату
5. Назовите методы доказательства неравенств и раскройте их смысл.
С известным перенести в одну сторону с неизвестным в другую, привести подобные члены и сделать выводы.
6. Что значит решить неравенство? Найти все его решения или установить , что их нет
7. Какие неравенства называются равносильными? которые имеют одни и те же решения.
8. Какие неравенства называются квадратными? неравенство вида ах²+вх+с (≤,≥,>,<)0
9. Объясните решение неравенств методом интервалов. Нужно квадратичный трехчлен представить в виде произведения, найти нули квадратичного трехчлена и определить знак одного из интервалов(потом чередуются)
10. Объясните графический решения квадратных неравенств.
11. Как решаются системы неравенств с одной переменной?
1)Найти область определения функции
выражений с корнем четной степени нет
знаменатель не равен нулю, значит х-1 не равен 0 значит х - не равен 1
область определения х є (-беск;1) U (1:+беск)
2)Чётность, нечётность функции
y(x)=(x+2)^3/(x-1)^2
y(-x)=(-x+2)^3/(-x-1)^2 не равно y(x)
y(-x)=(-x+2)^3/(-x-1)^2 не равно -y(x)
y(x)=(x+2)^3/(x-1)^2 не является ни четной ни нечетной
3)Непрерывность
y(x)=(x+2)^3/(x-1)^2 имеет точку разрыва при х=1
4)Критические точки
y(x)=(x+2)^3/(x-1)^2
y'(x)={3*(x+2)^2*(x-1)^2-(x+2)^3*2*(x-1)}/(x-1)^4 =
={3*(x-1)-2*(x+2)}*(x+2)^2/(x-1)^3=
=(3x-3-2x-4)*(x+2)^2/(x-1)^3=
=(x-7)*(x+2)^2/(x-1)^3
y'(x)=0 при
(x-7)*(x+2)^2/(x-1)^3=0
х=-2 x=1 х=7 - критические точки
5)Интервалы возрастания и убывания функции
в точках x=1 и х = 7 производная меняет знак
интервалы возрастания
х є (7; +беск) U (-2;1) U (-беск ;-2)
интервалы убывания
х є (1;7)
6)Экстремумы функции
в точках x=1 и х = 7 производная меняет знак
x=1 - локальный максимум
х = 7- локальный минимум
7)Критические точки второго рода
x=1 - критические точки 2 рода
8)Интервалы выпуклости и вогнутости функции
надо считать вторую производную - лень
9)Точки перегиба
то же самое
10)Асимптоты
вертикальная асимптота у=1
наклонная асимптота ищем в виде
у=ах+в
а = lim(y)/x=1
b=lim(y-a*x)=8
асимптота у = х+8
11)Построить график
график во вложении