пусть пешеход, вышедший из А, после встречи км. Тогда его скорость v1=S/t =
= 3x/2 км/час (40 мин = 2/3 час).
Пешеходу, вышедшему из В, после встречи пришлось пройти x + 2 км. Тогда его скорость
v2=S/t = 2(x+2)/3 км/час (1 час 30 мин = 3/2 час).
До встречи первый затратил время t = (x+2)/v1 = 2 * (x+2)/(3x).
До встречи второй затратил время t = x/v2 = 3 * x/(2(x+2)). Времена затраченные до встречи равны. Составляем уравнение.
(2x + 4)/3x = 3x/(2x+4)
(2x + 4)² = 9x²
либо 2x + 4 = 3x. x=4, либо
2x + 4 = -3x. x=-4/5 (не имеет смысла).
Искомое расстояние S = x + x + 2 = 4 + 4 + 2 = 10 км
Найдите координаты точек пересечения графиков функций
Если точка с координатами (х;у) точка пересечения то
1)у=-6х+1 и у=5х+9
-6x+1=5x+9
-6x-5x=9-1
-11x= 8
x= - 8/11
тогда у= 5*(-8/11)+9= -40/11 + 99/11=59/11=5⁴/₁₁
точка пересечения (-⁸/₁₁; 5 ⁴/₁₁)
2) у=21-9х и у=-2,5х+8
21-9x= -2.5x+8
-9x+2.5x=8-21
-6.5x=-13
x= -13/ -6.5
x=2
тогда у=21-9*2=21-18=3
точка перескечения (2;3)
3) у=16,2+8х и у=-0,8х+7,4
16,2+8х= -0,8х+7,4
16,2-7,4= -0,8х-8х
8,8= -8,8х
х= -1
тогда у= 16,2+8*(-1)=16,2-8=8,2
точка пересечения (-1; 8,2)
5) у=1-3х и у=-х-1
1-3х= -х-1
-3х+х=-1-1
-2х=-2
х=1
тогда у=1-3*1=1-3=-2
точка пересечения (1; -2)
6) у=1+7х и у=6,5х
1+7х=6,5х
1=6,5х-7х
1=-0,5х
х= -2
тогда у= 1+7*(-2)=1-14=-13
точка пересечения (-2; -13)
2)5 целых 1 6:2 целых 7 12=2
3) 3-2=1
ответ:1.