эта функция задает полуокружность с центром в (-1; 0), радиусом R=2, расположенную выше оси ох
это у нас окружность, но мы искусственно "добавили" отрицательную часть окружности, когда возвели обе части уравнения в квадрат. поэтому наша область значений
0 ≤ у ≤ 2 y ∈ [0; 2]
3) нули
-х² -2х +3 = 0 ⇒ x₁ = -3; х₂ = 1
4) промежутки возрастания/убывания
верхняя точка полуокружности (-1; 2) (-1 получаем из координаты центра, 2 из радиуса) тогда
[-3; -1] функция возрастает
[-1; 1] функция убывает
5) промежутки знакопостоянства
f(x) ≥0
6) минимум и максимум функции
исходя из того, что это полуокружность определенная на отрезке
[-3; 1] с центром в точке (-1,0) и R=2 получим минимум и максимум.
функция достигает:
минимума на концах области определения у(-3) = 0 и у(-1) =0
максимума в верхней точке полуокружности у(-1) = 2
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Объяснение:
1) область определения
-х² -2х +3 ≥ 0 ⇒ -3 ≤ х ≤ 1 х ∈ [-3; 1]
функция определена на отрезке [-3; 1]
2) область значений
эта функция задает полуокружность с центром в (-1; 0), радиусом R=2, расположенную выше оси ох
это у нас окружность, но мы искусственно "добавили" отрицательную часть окружности, когда возвели обе части уравнения в квадрат. поэтому наша область значений
0 ≤ у ≤ 2 y ∈ [0; 2]
3) нули
-х² -2х +3 = 0 ⇒ x₁ = -3; х₂ = 1
4) промежутки возрастания/убывания
верхняя точка полуокружности (-1; 2) (-1 получаем из координаты центра, 2 из радиуса) тогда
[-3; -1] функция возрастает
[-1; 1] функция убывает
5) промежутки знакопостоянства
f(x) ≥0
6) минимум и максимум функции
исходя из того, что это полуокружность определенная на отрезке
[-3; 1] с центром в точке (-1,0) и R=2 получим минимум и максимум.
функция достигает:
минимума на концах области определения у(-3) = 0 и у(-1) =0
максимума в верхней точке полуокружности у(-1) = 2