ее формула S=m/n(то есть число благоприятных исходов делим на число всех исходов)
в итоге получается,что два орла выпадут с вероятность 2/3 , а решка с вероятностью1/3
2)Решение: Всего возможных комбинаций при вбрасывании двух кубиков: 6 * 6 = 36.
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
Область определения функции D(х)=R
Область значений E(у)=[0; +∞)
Нули функции: х=0
Промежутки знакопостоянства: у>0 при х∈(-∞;0)∪(0+∞)
Функция убывает при х∈(-∞; 0).
Функция возрастает при х∈(0; +∞)
Функция ограничена снизу: у≥0
Экстремумы функии: у[min]=0
Функция непрерывна.
Функция чётная(график симметричен относительно оси Оу)
Функция непериодична.
б)
Область определения функции D(х)=R
Область значений E(у)=(-∞; 0)
Нули функции: х=0
Промежутки знакопостоянства: у<0 при х∈(-∞;0)∪(0+∞)
Функция убывает при х∈(0; +∞).
Функция возрастает при х∈(-∞; 0)
Функция ограничена сверху: у≤0
Экстремумы функии: у[max]=0
Функция непрерывна.
Функция чётная(график симметричен относительно оси Оу)
Функция непериодична.