1) Обозначим искомую линейную функцию у = kx +b. По условию её график параллелен прямой y=2x+11, следовательно угловые коэффициенты этих функций равны => k = 2 => искомая функция принимает вид у = 2x +b. 2) По условию график искомой функции пересекается с графиком y=x-3 в точке, лежащей на оси ординат, значит функции у = 2x +b, y=x-3 и ось ординат OY, которая задается формулой x = 0 пересекаются в одной точке. Решаем систему: у = 2x +b y=x-3 x = 0
Получаем: b = - 3. T.о. искомая функция имеет вид: у = 2x - 3
а) х2+5х-14=(х-2)(х+7);
х2+5х-14=0;
д=25-4*(-14)=25+56=81;
х1=(-5+9)/2=4/2=2;
х2=(-5-9)/2=-14/2=-7;
б)16х2-14х+3=16(х-0,5)(х-0,375);
16х2-14х+3=0
д=(-14)2-4*16*3=196-192=4;
х1=(14+2)/32=16/32=0,5;
х2=(14-2)/32=12/32=0,375;
в)(3у2-7у-6)/(4-9у2)=3(у-3)(у+2/3)/-9(у-2/3)(у+2/3)=3(у-3)/(6-9у)=
(3у-9)/(6-9у)=3(у-3)/3(2-3у)=(у-3)/(2-3у);
3у2-7у-6=(у-3)(у+2/3);
3у2-7у-6=0
д=49-4*3*(-6)=49+72=121;
у1=(7+11)/6=18/6=3;
у2=(7-11)/6=-4/6=-2/3;
4-9у2=-9(у-2/3)(у+2/3);
4-9у2=0
9у2=4
у1=4/9=2/3;
у2=-2/3.