Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
Для начала приведем выражение к виду квадратного уравнения, так как видим формулу сокращенного умножения квадрата разности: Приравняем к нулю для решения квадратного уравнения и избавимся от цифры 5 для простоты вычислений: Но вычислять корни, являющиеся точками пересечения с осью X нам не нужно, так как цель - вершина параболы. Она вычисляется по формуле: Мы получили значение координаты точки вершины параболы но только по оси Х. Для оси Y просто подставим полученное значение в исходную функцию: То есть точка 0 по оси Y. Итого координата вершины параболы: 3;0
3x^2 - 5x - 12 = 100;
3x^2 - 5x - 112 = 0;
D = 25 + 12*112= 1369 = 37^2;
x1 = (5+37) / 6= 42/6 = 7;
x2 = (5-37) /6= 31/6.
Одз:
3x^2 - 5x - 12 >0;разложим на множители.
3x^2 - 5x - 12 = 0;
D = 25 + 12*12 = 169= 13^2;
x1=(5-13) /6 = -4/3;
x2 = (5+13) / 6 = 3;
неравенство примет вид:
3(x + 4/3) (x -3) >0;
Решим его методом интервалов и получим
+ - +
(-4/3)(3)x
одз : x∈(- бесконечности; - 4/3) U ( 3;+ бесконечности).
Как видно, оба корня входят в область допустимых значений.