1) (x-2)(x+3)>0
если:
x-2>0
x>2
x принадлежит (2;+бесконечности)
или
x+3>0
x>-3
x принадлежит (-3; +бесконечности)
ответ: x принадлежит (2;+бесконечности) или (-3; +бесконечности)
2) (x-1)/(x+5)<_2
ОДЗ: x не равно 5
(x-1)(x+5)<_2
x^2+4*x-5<_0
x1=1
x2=-5
отмечаем на числовой прямой точки 1 и -5(выколотая)
на интервале от (-5;1] x принимает отрицательные значения
на интервалай (-бесконечность;-5) и [1;+бесконечность) x принимает положительные значения
ОТВЕТ: x принадлежит (-5;1]
12^n = 3^n*2^2n
(3^n*2^2n-3^n)/(2^n+1) = {3^n(2^2n-1)}/(2^n+1) = {3^n (2^n-1) (2^n+1)}/ (2^n+1) = 3^n(2^n+1)