М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SamaraArtem24
SamaraArtem24
18.11.2022 09:04 •  Алгебра

Aв степени 1/3 умножить на а получится а в степени 2/3?

👇
Ответ:
Зайчик010101
Зайчик010101
18.11.2022
Получится А в 1-ой степени,так как при умножении степени складываются показатели1\3+2\3=1 А остается не изменым
4,4(29 оценок)
Открыть все ответы
Ответ:
crasnowdim2018
crasnowdim2018
18.11.2022

а)2sin²x-3sinx-2=0

Замена  sinx=t

2t²-3t-2=0

D=3²+4×2×2=25

t₁= 3+√D÷4=3+5÷ 4=8÷4=2

t₂=3-√D÷4=3-5÷4=-2÷4=-0,5

Возвращаемся к замене

sinx=2                                   sinx=-0,5

решения нет                          х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z

  -1≤sinx ≥1                            x=(1)⁻k × -π\6 +πn,n∈Z

 

4cos²x+4sinx-1=0

 cos²x=1-sin²x

4( 1-sin²x)+4sinx-1=0

4-4sin²x+4sinx-1=0

-4sin²x+4sinx-1+4=0

-4 sin²x+4sinx+3=0      ÷(-1)

4sin²x-4sinx-3=0

Замена sinx=t

4t²-4t-3=0 

D=4²+4×4×3=16+48=64

t₁=4+√D÷8= 4+8÷8=12÷8=1,5

t₂=4-√D÷8=4-8÷8= -4÷8=-0,5

 Возвращаемся к замене

 sinx=1,5                                 sinx=-1\2
решения нет                         х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z 
  -1≤sinx ≥1                              x=(1)⁻k × -π\6 +πn,n∈Z

 

4,7(13 оценок)
Ответ:
ponfilovden
ponfilovden
18.11.2022

sin (5πx/9) = sin (πx/9) + sin (2πx/9)

sin (5πx/9) - sin (πx/9) = sin (2πx/9)

По формуле разности синусов:

2sin(\frac{(5\pi x - \pi x)}{2*9})cos(\frac{(5\pi x + \pi x)}{2*9}) - sin (2πx/9) = 0;

2 sin(2πx/9)cos(πx/3) - sin(2πx/9)=0;

sin (2πx/9) (2cos(πx/3)-1)=0;

sin (2πx/9)=0 или 2cos (πx/3)=1; cos (πx/3)=1/2

2πx/9=πn, n∈Z или πx/3=π/3+2πn, n∈Z или πx/3=-π/3+2πn, n∈Z;

Сокращаем на π:

2x/9=n, n∈Z или x/3=1/3+2n, n∈Z или x/3=-1/3+2n, n∈Z;

x=9n/2 или x=6n+1 или x=6n-1

Теперь отбираем корни уравнения, принадлежащие промежутку (4;8)

4<(9/2)n<8; 8/9<n<16/9; n=1, x=4,5

4<6n+1<8; 3<6n<7; 1/2<n<7/6; n=1; x=6+1=7;

4<6n-1<8; 5<6n<9; 5/6<n<3/2; n=1; x=6-1=5

ответ: x={4,5;5;7}

4,6(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ