В решении.
Объяснение:
Решить уравнение:
1/(х - 4)² - 7/(х - 4) + 10 = 0
Умножить все части уравнения на (х - 4)², чтобы избавиться от дробного выражения:
1 - 7*(х - 4) + 10*(х - 4)² = 0
Разложить квадрат разности по формуле:
1 - 7*(х - 4) + 10*(х² - 8х + 16) = 0
Раскрыть скобки:
1 - 7х + 28 + 10х² - 80х + 160 = 0
Привести подобные:
10х² - 87х + 189 = 0, квадратное уравнение, ищем корни:
ОДЗ: х ≠ 4;
D=b²-4ac = 7569 - 7560 = 9 √D=3
х₁=(-b-√D)/2a
х₁=(87-3)/20
х₁=84/20
х₁=4,2;
х₂=(-b+√D)/2a
х₂=(87+3)/20
х₂=90/20
х₂=4,5.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
Уравнения называются равносильными, если множества их корней одинаковы или если эти уравнения не имеют корней.
Свойства уравнений:
Если к обеим частям уравнения прибавить одинаковое число, то получится уравнение, равносильное данному.Если обе части уравнения разделить или умножить на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному.Найдем корни уравнения:
5х - 4 = 6
5х = 10
х = 10 : 5
х = 2
Этому уравнению равносильно, например, уравнение
4 - 2х = 0, так как корнем этого уравнения так же является число 2.