Пусть f(x)=ax^2+bx+c. Данные уравнения могут быть записаны в виде
ax^2+(b-5)x+(c+20)=0;\ ax^2+(b-2)x+(c+8)=0.
По условию эти уравнения имеют единственные корни, что бывает тогда и только тогда, когда их дискриминанты равны нулю, то есть
(b-5)^2-4ac-80a=0;\ (b-2)^2-4ac-32a=0.
Домножим первое выражение на 2, а второе на 5, после чего возьмем их разность:
2(b-5)^2-8ac-5(b-2)^2+20ac=0;\ 12ac=3b^2-30;\ 4ac=b^2-10,
откуда дискриминант исходного квадратного трехчлена равен
b^2-4ac=b^2-b^2+10=10.
Таким образом, дискриминант равен 10, а значит наибольшее значение, которое он может принимать, также равен 10
Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
ответ: 6 метров
2) 50*1/5=10 (км)-длина перегона
3) 12-2=10(мин)=1/6 (ч)-желаемое время прохождения перегона
4) 10: 1/6=10*6=60(км/ч)-желаемая скорость
5) 60-50=10(км/ч)-на столько км/ч надо увеличить скорость
ответ: на 10 км/ч