На первую решение: Возьмем стороны прямоугольника за А и В, тогда периметр равен 2А+2В=22, а площадь - А*В=24. Выразим отсюда А=24/В. Подставим в периметр, тогда имеем 2*24/В+2В=22. Имеем квадратное уравнение: 2В^2-22В+48=0 Д=100 Корнями являются числа 3 и 8, это сторона В. Отсюда получим, что сторона А может быть равна 8 или 3 соответственно. На вторую решение: Пусть Х-собственная скорость катера. Тогда скорости по течению и против будут равны Х+3 и Х-3 соответственно. Отсюда получаем, что время движения катера по течению и против него равно 5/(Х+3)+12/(Х-3), и равно времени движения в стоячей воде с собственной скоростью 18/Х. Приравниваем. 5/(х+3)+12/(х-3)=18/х. Получается квадратное уравнение х^2-21х-162=0. Два корня являются решениями, но один из них отрицательный, следовательно х=27. ответ: собственная скорость катера - 27 км/ч.
Решение: Пусть a,b,c,d – данные последовательно записанные числа. Тогда по условию a+d=22 (1) b+c=20 (2) Из свойств арифметической и геометрической прогрессии имеем: a+c=2*b (3) c^2=b*d (4) Из (2) получим b=20-c (5). Сложив (1) и (2), получим a+b+c+d=22+20=42, использовав (3) и (5), получим
3*b+d=42, d=42-3*b=42-3*(20-c)=42-60+3*c=3*c-18,
то есть d=3*c-18 (6). Использовав (4), (5), (6), получим c^2=(20-c)*(3c-18). Решаем: c^2=60*c-360-3*c^2+18*c=-3c^2+78c-360. 4*c^2-78*c+360=02*c^2-39*c+180=0. d=39^2-4*2*180=81c1=(39-9)\(2*2)=30\4=15\2=7.5 c2=(39+9)\(2*2)=12 Из (1), (6) получим: а=22-d=22-(3*c-18)=40-3*c (7). Используя (5), (6), (7), получим: a1=40-3*7.5=17.5 a2=40-3*12=4b1=20-7.5=12.5 b2=20-12=8d1=3*7.5-18=4.5 d2=3*12-18=18 Таким образом получили две последовательности 17.5;12.5;7.5;4.5 и 4;8;12;18.
Затем формулы двойного угла
sin2α=2sinαcosα
cos2α=cos²α-sin²α=cos²α-(1-cos²α)=2cos²α-1⇒ 2cos²α=1+cos2α
cos2α=cos²α-sin²α=1-sin²α-sin²α=1-2sin²α⇒ 2sin²α=1-cos2α
а) сos75°cos105°=cos(90°-15°)·cos(90°+15°)=
= sin15°(-sin15°)=-sin²15°=-(1-cos30°)/2=(cos30°-1)/2=
((√3/2)-1)/2=0,25√3-0,5
б) sin75°sin15°=°sin(90°-15°)sin15°=cos15°sin15°=sin30°/2=1/4=0,25
в) sin105°cos15°=sin(180°-75°)cos15°=sin75°cos15°=sin(90°-15°)cos15°=cos15°cos15°=(1+cos30°)/2=(1+(√3/2))/2=0,5 +0,25√3
Формулы
cosα·cosβ=0,5cos(α-β)+0,5cos(α+β)
sinα·sinβ=0,5cos(α-β)-0,5cos(α+β)
sinα·cosβ=0,5sin(α+β)+0,5sin(α-β)
а) сos75°cos105°=0,5cos(75°-105°)+0,5cos(75°+105°)=0,5cos(-30°)+0,5 cos180°=
=0,5·√3/2+0,5·(-1)=0,25√3-0,5
б) sin75°sin15°=0,5cos(75°-15°)-0,5cos(75°+15°)=0,5cos60°-0,5 cos90°=0,5·0,5=0,25
в) sin105°cos15°=0,5sin(105°+15°)+0,5sin(105°-15°)= =0,5sin120°+0,5sin90°=
=0,5 sin(180°-60°)+0,5·1=0,5 sin 60°+0,5=0,25√3+0,5