Пусть n – первое число, тогда второе n+1 ( т. к. по условию три последовательных числа) , третье n+2. сумма квадратов равна 2030, т. е. n²+(n+1)²+(n+2)²=2030 раскрываем скобки n²+ n²+2n+1+ n²+4n+4=2030 n²+ n²+2n+1+ n²+4n+4-2030=0 приводим подобные 3 n²+6n-2025=0 вынесем общий множитель 3, для простоты расчета 3 (n²+2n-675)=0 или n²+2n-675=0 дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле д=в²-4ас=2²-4*1*(-675)=4+2700=2704 корни квадратного уравнения определим по формуле n₁=-в+√д/2а=-2+√2704/2*1=-2+52/2=50/2=25 n2=-в+√д/2а=-2-√2704/2*1=-2-52/2=-54/2=-27 натуральное число это числа используемые для счета, следовательно подходит только один корень. соответственно, первое число равно 25, второе 26, третье 27
Линейное уравнение представляется в виде: ax + b = 0, где a и b – любые числа. несмотря на то, что a и b могут быть любыми числами, их значения влияют на количество решений уравнение. выделяют несколько частных случаев решения: если a=b=0, уравнение имеет бесконечное множество решений; если a=0, b≠0, уравнение не имеет решения; если a≠0, b=0, уравнение имеет решение: x = 0. в том случае, если оба числа имеют не нулевые значения, уравнение предстоит решить, чтобы вывести конечное выражения для переменной. как решать? решить линейное уравнение – значит, найти, чему равна переменная. как же это сделать? да просто – используя простые операции и следуя правилам переноса. если уравнение предстало перед вами в общем виде, вам повезло, все, что необходимо сделать: перенести b в правую сторону уравнения, не забыв изменить знак (правило таким образом, из выражения вида ax + b = 0 должно получиться выражение вида: ax = -b. применить правило: чтобы найти один из множителей (x - в нашем случае), нужно произведение (-b в нашем случае) поделить на другой множитель (a - в нашем случае). таким образом, должно получиться выражение вида: x = -b/а.
1) найдем точки пересечения
sqrt(x)=kx
x=(kx)^2
k^2*x^2-x=0
x(k^2*x-1)=0
x=0 x=1/k^2
2) площадь фигуры
int (sqrt(x)-kx, x=0.. 1/k^2)= (2/3)*x^(3/2) - k/2*x^2 , x=0..1/k^2
(2/3)* (1/k^2) ^(3/2) - k/2*(1/k^2) ^2=2/3*(1/k)^3- 1/(2*k^3)=(2/3 -1/2) (1/k^3)=
1/(6*k^3)
1/(6*k^3)=4.5
6k^3=2/9
k^3=1/27
k=1/3