Строй обычную параболу с вершиной 0;0 далее смещай ее на две еденицы по оси ох влево, а затем опускай на единицу вниз по оси оу вот и все то, что получилось - искомый график
1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
далее смещай ее на две еденицы по оси ох влево, а затем опускай на единицу вниз по оси оу вот и все
то, что получилось - искомый график