B зрительном зале были 320 посадочных мест , с равными количеством в каждом ряду.после того как количество посадочных мест в каждом ряду увеличили на 4 и добавили ещё один ряд ,то количество посадочных мест в зале стало 420.сколько рядов стало в зрительном зале ?
Пусть х мест было в каждом ряду, тогда рядов было 320/х . После увеличения зрительного зала мест стало (х+4) , а рядов 320 / х + 1 . Составляем уравнение по условию задачи: (х+4) * ( 320/х + 1) = 420 (х+4) *(320+х) / х = 420 приводим к общему знаменателю и отбрасываем его заметив, что х≠0 (х+4)(320+х) = 420х 320х+х2+1280+4х-420х=0 х2 -96 х +1280 = 0 Д= 9216 - 4*1280 = 9216 -5120=4096 х(1)=(96+64) / 2 =80 (нереально для кинотеатра, так как в каждом ряду по 4 места) х(2) =(96-64) / 2 =16 320:16 + 1 = 21 ряд стал в новом зрит зале.
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
2 умножить на 2=4
4 умножить на 15=60