Решим задачу на движение по воде
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
ответ: 91,7 километров.
a) cos180°+ 4tg 45°=-1+4*1=3;
б) 3 cos π/2 - 2sin π/6=3*0-2*1/2=-1
2. Упростите выражение:
а)1- ctgα*cosα*sinα=1- cosα*cosα=sin^2(a)
3. Найдите sin и tg, если известно, что
cos=8/17 и 3π/2<α< 2π.
sin=-корень(1-(8/17)^2) = -15/17
tg = sin/cos=-15/8
4. Упростите выражение: .
1/ctgα + cosα/(1+sinα)=sin/cosα + cosα/(1+sinα)=
=(sin*(1+sinα) + cos^2(α))/ ((1+sinα)cosα)=(sin+1)/ ((1+sinα)cosα)=1/cosα