1.в
2.в
3.в
4.б
5.б
6.а
7.а) x1=0; x2=6; б) x1=-0,4; x2=0,4;
8.(2x+9)*(x-1)=0
x1= -4.5; x2= 1;
9. x^2-5x+4
10. (3x+1)^2=4x^2+5x-1
5x^2+5x+2=0
дискриминант отрицательный.
11. x1=-4; x2=-3; x3=3; x4=4;
12. За т. Вієта сума коренів квадратного рівняння дорівнює другому коефіцієнтові, взятому із протилежним знаком (тобто, x_1+x_2=14)
Формулу x_1^2+x_2^2 можна представити як (x_1+x_2)^2-2x_1*x_2, але для цього ми маємо знати ще добуток коренів.
Добуток коренів (знову-таки за т. Вієта) дорівнює третьому коефіцієнтові (тобто, x_1*x_2=5)
Підставимо значення у формулу: (x_1+x_2)^2-2*x_1*x_2=14^2-2*5=196-10=186
1x+2x=0,8+1,2 6x+14x=13,5+7,5 -a-a=-1,8+2
3x=2 20x=21 -2a=0,2
x=2\3 x=21\20 a=0,2\(-2)
в)-7y-0,6=3,6-y x=1,05 a=-1
-7y+y=3,6+0,6 д)0,6y-1,5=0,3y-1,2
-6y=4,2 0,6y-0,3y=-1,2+1,5
y=4\(-6) 0,3y=0,3
y=-0,7 y=0,3\0,3 y 1