4 / 2 2 /atan2(-im(m), -re(m))\ 4 / 2 2 /atan2(-im(m), -re(m))\
\/ 3 *\/ im (m) + re (m) *cos|| i*\/ 3 *\/ im (m) + re (m) *sin||
\ 2 / \ 2 /
n1 = - -
3 3
4 / 2 2 /atan2(-im(m), -re(m))\ 4 / 2 2 /atan2(-im(m), -re(m))\
\/ 3 *\/ im (m) + re (m) *cos|| i*\/ 3 *\/ im (m) + re (m) *sin||
\ 2 / \ 2 /
n2 = +
3 3
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| - + || / / \ / \ |atan2| - + ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n3 = - 4 / | - | + | + | *cos|| - i*4 / | - | + | + | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| - + || / / \ / \ |atan2| - + ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n4 = 4 / | - | + | + | *cos|| + i*4 / | - | + | + | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| + - || / / \ / \ |atan2| + - ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n5 = - 4 / | + | + | - | *cos|| - i*4 / | + | + | - | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
/ / \\ / / \\
/ 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)|| / 2 2 | |im(m) \/ 3 *re(m) re(m) \/ 3 *im(m)||
/ / \ / \ |atan2| + - || / / \ / \ |atan2| + - ||
/ |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /| / |im(m) \/ 3 *re(m)| |re(m) \/ 3 *im(m)| | \ 6 6 6 6 /|
n6 = 4 / | + | + | - | *cos|| + i*4 / | + | + | - | *sin||
\/ \ 6 6 / \ 6 6 / \ 2 / \/ \ 6 6 / \ 6 6 / \ 2 /
Для построения прямой достаточно двух точек:
х=0 ⇒ у=5·0 -3=-3
х=2 ⇒ у = 5·2 - 3 =7
Провести прямую через точки (0; -3) (2;7)
2) Квадратичная функция. График парабола. Ветви вниз.
Выделим полный квадрат
-х² +6х = - (х²-6х)=-(х²-6х+9-9)=-(х²-6х+9)+9=-(х-3)²+9
Вершина параболы в точке (3 ;9)
-х²+6х=0
-х(х-6)=0
х=0 или х-6=0
Парабола пересекает ось ох в точках
х=0 и х=6