2a-1
10a^{2} -a-2
Мы знаем, что дробь равна нулю, когда числитель равен нулю, а знаменатель - нет.
10а^{2} -a-2\neq 0
Разложим знаменатель на множители, для того, чтобы увидеть: можно ли сократить дробь. А для того, чтобы разложить на множители, мы знаменатель приравняем к нулю и найдём корни квадратного уравнения.
10а^{2} -a-2=0
D=b^{2} -4ac
D=1-4*10*(-2)=1+80=81
\sqrt{D} = \sqrt{81} = 9
a_{1} = 1+9 = 10 = 1 = 0,5
2*10 20 2
a_{2} = 1-9 = -8 = -2 = -0,4
2*10 20 5
Разлаживаем на множители: 10*(a-0,5)(a+0,4).
Теперь подставляем разложеный на множители знаменатель в дробь, а в числителе выносим общий множитель 2 (чтобы мы смогли сократить дробь.
2*(a-0,5)
10*(a-0,5)(a+0,4)
Сокращаем дробь на множитель (a-0,5) - у нас остаётся 1, и на множитель 2 - в числителе останется 1. а в знаменателе 5. Получается:
1
5*(a+0,4)
Приводим к общему знаменателю (x+6)
[x(x+6) + 20 - 6(x+6)] / (x+6) >= 0
(x^2 + 6x + 20 - 6x - 36) / (x+6) >= 0
(x^2 - 16) / (x+6) >= 0
(x-4)(x+4) / (x+6) >= 0
По методу интервалов x ∈ (-6; -4] U [4; +oo)
б) √(x+4,2) + 1/√(x+4,2) >= 5/2
Замена √(x+4,2) = y > 0, потому что корень арифметический, то есть
не только число под корнем, но и сам корень неотрицательны.
А, поскольку корень в знаменателе, то он не равен 0.
y + 1/y - 5/2 >= 0
Приводим к общему знаменателю 2y
(2y^2 - 5y + 2) / (2y) >= 0
(y - 2)(2y - 1) / (2y) >= 0
По методу интервалов y = √(x+4,2) ∈ (0; 1/2] U [2; +oo)
Возводим в квадрат
x + 4,2 ∈ (0; 1/4] U [4; +oo)
x ∈ (-4,2; -3,95] U [-0,2; +oo)
Решения 2 нер-ва, НЕ являющиеся решениями 1 нер-ва.
(-4; -3,95] U [-0,2; 4)