Найдите сумму квадратов расстояний от произвольной точки окружности до всех вершин прямоугольника, вписанного в эту окружность, если длины сторон прямоугольника равны 6 и 8
Так как в прямоугольнике стороны образуют угол равный , то получим что диагональ есть диаметр окружности . Положим что есть точка на окружности , опустим с нее прямые на каждую из вершин , получим что две прямые происходящие от вершины А , опираются на диагональ , а диагональ равна , вторая сумма симметрична этой сумме , в итоге
Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Что представляет из себя функция ? Это сумма постоянной величины А=(6+(7√3)/2+7pi/2), c -7cosx , принимающей значения от -7 до +7, и прямой -3,5х , принимающей значения от +∞ до -∞ на всей числовой оси, ясно, что предел функции при х→ +∞ будет -∞ , но убывает она не монотонно ,а колеблясь вокруг убывающей прямой , поэтому нельзя с уверенность сказать, что в данном замкнутом отрезке значение y(7pi/2) будет минимальным. Поэтому будем брать производную , приравняем ее к 0 , найдем экстремумы на данном отрезке и тогда уже сделаем вывод. Дальше я буду писать на листочке и прикреплю его.
Положим что есть точка