М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sebasogo
sebasogo
02.04.2020 18:40 •  Алгебра

Найдите наименьший положительный период функции f(x)=2sin(-х/3+п/9)-2

👇
Ответ:
adelifanku2
adelifanku2
02.04.2020
Наименьший положительный период функции
у= sinx
T=2π   его называют периодом функции
Если функция задана выражением 
у= sin kx, то
период этой функции равен  \frac{2 \pi }{k}

По условию задачи
f(x)=-2sin( \frac{1}{3}x- \frac{ \pi }{9})-2
k =(1/3)
\frac{2 \pi }{k}= \frac{2 \pi }{ \frac{1}{3} }=6 \pi -наименьший положительный период функции
f(x)=-2sin( \frac{1}{3}x- \frac{ \pi }{9})-2
4,6(67 оценок)
Открыть все ответы
Ответ:
Маркус337
Маркус337
02.04.2020
y=-5 - \frac{x-2}{x^2- 2x}

Находим область определения функции:
x^2- 2x \neq 0
\\\
x(x- 2) \neq 0
\\\
\Rightarrow x \neq 0;x \neq 2
D(y)=(-\infty;0)\cup(0;2)\cup(2;+\infty)

Теперь можно выполнить упрощение:
y=-5 - \frac{x-2}{x^2- 2x} =-5 - \frac{x-2}{x(x- 2)} =-5 - \frac{1}{x}

Данный график представляет собой гиперболу y= \frac{1}{x}, отображенную симметрично оси абсцисс и сдвинутую на 5 единиц вниз. Помним про то, что функция не определена в точках 0 и 2.

Прямая y=m представляет собой прямую, параллельную оси абсцисс, проходящую через точку (0; m).

Прямая y=m не имеет общих точек с построенным графиком при m=-5 (асимптота гиперболы по построению, так как сдвиг проводился на 5 единиц вниз) и при m=-5.5 (именно это значение принимала бы функция y=-5- \frac{1}{x} в точке 2, но эта точка не принадлежит области ее определения).

ответ: -5 и -5,5
4,7(13 оценок)
Ответ:
оффЛис
оффЛис
02.04.2020
Y =  (1/3)*(x^3) -(x^2)
Находим первую производную:
f'(x) = x2-2x
или
f'(x) = x(x-2)
Находим нули функции. Для этого приравниваем производную к нулю
x(x-2) = 0
Откуда:
x1 = 0
x2 = 2
На промежутке (-∞ ;0)  f'(x) > 0 -  функция возрастает; 
 На промежутке    (0; 2)    f'(x) < 0 функция убывает;
На промежутке  (2; +∞)    f'(x) > 0 функция возрастает.
В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума.
 В окрестности точки x = 2 производная функции меняет знак с (-) на (+). Следовательно, точка x = 2 - точка минимума.
4,7(83 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ