3sin^2(2x) + 10sin(2x) + 3 = 0.
Введем новую переменную, пусть sin(2x) = а.
Получается уравнение 3а^2 + 10а + 3 = 0.
Решаем квадратное уравнение с дискриминанта:
a = 3; b = 10; c = 3;
D = b^2 - 4ac; D = 10^2 - 4 * 3 * 3 = 100 - 36 = 64 (√D = 8);
x = (-b ± √D)/2a;
а1 = (-10 - 8)/(2 * 3) = -18/6 = -3.
а2 = (-10 + 8)/6 = -2/6 = -1/3.
Возвращаемся к замене sin(2x) = а.
1) sin(2x) = -3 (не может быть, синус любого угла больше -1, но меньше 1).
2) sin(2x) = -1/3.
Отсюда 2х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
Делим все на 2: х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
Обозначаем вместимость бассейна как условное число 1.
Поскольку оба насоса наполняют бассейн за 4 часа, то их общая скорость наполнения будет равна:
1 / 4 = 1/4 часть бассейна в час.
Скорость наполнения первого насоса составит:
1 / 12 = 1/12 часть бассейна в час.
Определяем скорость наполнения второго насоса.
Для этого от общей продуктивности работы отнимаем скорость работы второго насоса.
1/4 - 1/12 = 3/12 - 1/12 = 2/12 = 1/6 часть в час.
Значит он наполнит бассейн за:
1 / 1/6 = 1 * 6/1 = 6 часов.
6 ч.
Объяснение: