Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Это возрастающая функция, но чем правее, тем она растет медленнее, поскольку с ростом x убывает. Значит, при возрастании аргумента с 5 до 7 (на 2 единицы) функция увеличится больше, чем при возрастании аргумента с 11 до 13 ( на те же 2 единицы). Вывод:
.
Если такими методами пользоваться нельзя, произведем несколько преобразований, не изменяющих знак между левой и правой частями.
;
возводим в квадрат:
еще одно возведение в квадрат приводит к очевидному неравенству
Значит, во всех местах, можно заменить знак вопроса на знак больше
Производную ищем
Вычислим значение производной в точке х0
Значение функции в точке х0
Составим уравнение касательной