Очевидно что все х1, х2, х3, х4 одновременно отрицательными быть не могут, тогда в левой части было отрицательное число.
очевидно что ни один из х1, х2, х3, х4 не может быть 0, (остальные тогда должны равняться 2, и 0+2*2*2=2 неверное, противоречие)
домножая первое на х1, второе на х2, третье на х3, четвертое на х4, получим
вычитая (и используя разность квадратов) получим откуда или
аналогично получаем другие соотношения таких же двух возможных типов соотношений между корнями
итого в общем надо рассмотреть следующие возможные комбинации (остальные дадут повтор в силу симметрии записи уравнений по переменным), + первое исходное уравнение можем убедиться что (1,1,1,1) - единственное решение
Х - изготовил деталей за 1 день первый рабочий у - изготовил деталей за 1 день второй рабочий , по условию задачи имеем : 5х - 7у = 3 8х + 15у = 162 , решим уравнения системой уравнений . Первое уравнение умножим на 8 , а второе на 5 и от первого отнимем второе . Получим : 40х - 56у = 24 40х + 75у = 810 -56у - 75у = 24 - 810 - 131у = - 786 у = 6 деталей изготовил второй рабочий за день Подставим полученное значение в первое уравнение : 5х - 7*6 = 3 5х = 3 + 42 5х = 45 х = 45/5 х = 9 деталей изготовил первый рабочий за 1 день
очевидно что ни один из х1, х2, х3, х4 не может быть 0, (остальные тогда должны равняться 2, и 0+2*2*2=2 неверное, противоречие)
домножая первое на х1, второе на х2, третье на х3, четвертое на х4, получим
вычитая (и используя разность квадратов) получим
откуда
или
аналогично получаем другие соотношения таких же двух возможных типов соотношений между корнями
итого в общем надо рассмотреть следующие возможные комбинации (остальные дадут повтор в силу симметрии записи уравнений по переменным),
+
первое исходное уравнение
можем убедиться что (1,1,1,1) - единственное решение