М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
таня2022
таня2022
11.04.2020 21:29 •  Алгебра

Sin^2(x-8π) =1-cos^2(16π-x) докажите тождество

👇
Ответ:
Sin(x-8π)=-sin(8π-x)=-sinx
sin²(x-8π)=(-sinx)²=sin²x
cos(16π-x)=cosx
1-cos²(16π-x)=1-cos²x=sin²x
левая часть  sin²x=sin²x  правая часть
4,5(69 оценок)
Открыть все ответы
Ответ:
mrmrheik
mrmrheik
11.04.2020
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
4,4(8 оценок)
Ответ:
Sveta7102006
Sveta7102006
11.04.2020
\sqrt{9x^2-x-10} \geq 3x-2

Данное неравенство равносильно совокупности двух систем:
 
1)
\left \{ {{3x-2\ \textless \ 0} \atop {9x^2-x-10 \geq 0}} \right.

\left \{ {{3x\ \textless \ 2} \atop {9(x-1 \frac{1}{9} )(x+1) \geq 0}} \right.

\left \{ {{x\ \textless \ \frac{2}{3} } \atop {9(x-1 \frac{1}{9} )(x+1) \geq 0}} \right.

9x^2-x-10=0
D=(-1)^2-4*9*(-10)=361
x_1= \frac{1+19}{18} = \frac{10}{9}=1 \frac{1}{9}
x_2= \frac{1-19}{18} = -1
9x^2-x-10=9(x-1 \frac{1}{9} )(x+1)

------------------(2/3)-----------------------
/////////////////////
   +                     -                           +
--------[-1]-------------------[10/9]--------------
///////////                              ////////////////////

x ∈ (- ∞ ;-1]

2)
\left \{ {{3x-2 \geq 0} \atop {( \sqrt{9x^2-x-10})^2 \geq (3x-2)^2}} \right.

\left \{ {{3x \geq 2} \atop {9x^2-x-10\geq 9x^2-12x+4}} \right.

\left \{ {{x \geq \frac{2}{3} } \atop {9x^2-x-10- 9x^2+12x-4 \geq 0}} \right.

\left \{ {{x \geq \frac{2}{3} } \atop {11x \geq 14}} \right.

\left \{ {{x \geq \frac{2}{3} } \atop {x \geq 1 \frac{3}{11} }} \right.

---------------[2/3]-------------------------
                    //////////////////////////////
--------------------------[14/11]-----------
                                  /////////////////

x ∈ [1 \frac{3}{11};+ ∞ )

Объединяем данные промежутки и получаем 

ответ: x ∈ (- ∞ ;-1] ∪ [1 \frac{3}{11};+ ∞ )
Решить пример (иррациональные неравенства и их системы)
Решить пример (иррациональные неравенства и их системы)
4,8(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ