log₇ (x² - 9) - log₇ (9 - 2x) = 1
ОДЗ :
1) x² - 9 > 0; (x + 3) (x - 3) > 0
Метод интервалов
(-3) (3) > х
x ∈ (-∞; -3) ∪ (3; +∞)
2) 9 - 2x > 0; 2x < 9; x < 4,5
ОДЗ : x ∈ (-∞; -3) ∪ (3; 4,5)
log₇ (x² - 9) = log₇ (9 - 2x) + 1
log₇ (x² - 9) = log₇ (9 - 2x) + log₇7
log₇ (x² - 9) = log₇ (7 · (9 - 2x))
x² - 9 = 7 · (9 - 2x)
x² + 14x - 72 = 0 Квадратное уравнение, корни по т. Виета
(x + 18)(x - 4) = 0
1) x + 18 = 0; x₁ = -18; x₁ ∈ (-∞; -3) ∪ (3; 4,5)
2) x - 4 = 0; x₂ = 4; x₂ ∈ (-∞; -3) ∪ (3; 4,5)
ответ: x₁ = -18; x₂ = 4
Использованы формулы
logₐ a = 1
logₐ b + logₐ d = logₐ (b · d)
ответы : 1) два числа в сумме дают 3, а при умножении 2, значит это числа 2 и 1.
2) в сумме - 30, а при умножении 225, 225 это 15 *15, значит корни - 15 и - 15.
3) в сумме 22, при умножении 105, это могут дать только 15 и 7.
4) в сумме - 29, при умножении 180, это числа - 20 и - 9. (можно и через дискриминант, но я могу и такие числа подобрать, это не сложно.)
5)здесь надёжнее для всех решать через дискриминант, в этом примере он равен 441, значит это 21^2. x1=(-3-21)/2=-12
x2=(-3+21)/2=9
Корни этого уравнения : - 12 и 9.
6)в этом примере также лучше решать через дискриминант, но числа лёгкие для подбора, они в сумме равны - 3, а в произведении - 340, значит это - 20 и 17.
7)в сумме 1, в произведении - 72, значит это - 8 и 9.
8)в сумме - 5, в произведении - 66, такое могут дать только - 11 и 6.
9)в сумме 36, а в произведении 324, это же 18 ^2, сразу вспоминается таблица квадратов. Итак, корни 18 и 18. Можно написать в ответ только один корень, потому что они одинаковые.
10) в сумме 11, в произведении 24, это 8 и 3.
11) в сумме 10, в произведении 9, корни этого уравнения 9 и 1.
12)в сумме 30, при умножении 209, из этого можно понять что это 19 и 11.
13)в сумме 6, при умножении - 135, значит корни 15 и - 9.
14)в сумме 5, при умножении -150, корни 15 и -10.
15) в сумме - 9, при умножении - 190, значит корни -19 и 10.
Объяснение:
Теорема виета служит для быстрого решения уравнений подбором. ax^2+px+q=0
-p=x1+x2(здесь мы берём противоположное число тому, что стоит перед x.)
q=x1*x2