Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.
1) sinx ≥ -1/2
Применяем формулу:
arcsina + 2πn ≤ x ≤ π - arcsina + 2πn, n∈Z
arcsin(-1/2) + 2πn ≤ x ≤ π - arcsin(-1/2) + 2πn, n∈Z
-π/6 + 2πn ≤ x ≤ π + π/6 + 2πn, n∈Z
-π/6 + 2πn ≤ x ≤ 7π / 6 + 2πn, n∈Z
2) 2cosx ≥√3
cosx≥ √3 / 2
Применяем формулу:
- arccosa + 2πn ≤ x ≤arccosa + 2πn,n∈Z
- arccos(√3/2) + 2πn ≤ x ≤ arccos(√3/2) + 2πn,n∈Z
- π/6 + 2πn ≤ x ≤ π/6 + 2πn, n∈Z
3) sinx ≤ √3/2
Применяем формулу:
-π - arcsina + 2πn ≤ x ≤ arcsina + 2πn, n∈Z
-π - arcsin(√3/2) + 2πn ≤ x ≤ arcsin(√3/2) + 2πn, n∈Z
- π - π/3 + 2πn ≤ x ≤ π/3 + 2πn, n∈Z
-4π/3 + 2πn ≤ x ≤ π/3 + 2πn, n∈Z
4) tgx ≤√3/3
Применяем формулу:
- π/2 + πn ≤ x ≤ arctga + πn, n∈Z
- π/2 + πn ≤ x ≤ arctg(√3/3) + πn, n∈Z
- π/2 + πn ≤ x ≤ π/6 + πn, n∈Z