Деление без остатка: 2)1,3,19 и 57
А так при деление на 2 должно заканчивать четным числом
на 3 сумма чисел должна делиться на 3 (например 12 это1+2=3 делится на3)
на 5 заканчивается на 5 или 0
Объяснение:
1) разложим числитель и знаменатель на множители. Из числителя вынесем 8 как общий множитель, в знаменателе воспользуемся формулой сокращённого умножения a^2-b^2 = (a-b)(a+b). Тогда будет 8*(x+4)/((x-4)(x+4)) => 8/(x-4) учитывая что x≠-4
2) 1) 7a/(b-3) и b/((b-3)(b+3)) => 7a*(b+3)/((b-3)(b+3)) и b/((b-3)(b+3))
Под 2) 1/(х-3)^2 и 1/((х-3)(х+3)) => (х+3)/((х-3)^2)*(х+3)) и (х-3)/((х-3)^2)*(х+3))
Номер 3)
1) t^2/(3*(t-2)) + 4/(3*(2-t)) => t^2/(3*(t-2)) — 4/(3*(t-2)) => (t^2-4)/(3*(t-2)) => (t+2)/3 с учётом t≠-2
2) a^2/((a-8)(a+8)) - a/(a+8) => (a^2-a*(a-8))/((a-8)(a+8)) => 8a/((a-8)(a+8))
Интересное уравнение! Но...почему вы так дешево его оценили?
Сначала рассмотрим вопрос с О.Д.З. Это множество описывает система неравенств:
{ x²+5x-5>0,
{ x>0.
Решать её пока не будем. Полученные корни уравнения потом можем подставить в эту систему и таким образом определить из них "посторонние".
Тереть выполним подстановку.
Пусть log₃(x²+5x-5) = u, log₃x = v. Тогда получи такое уравнение:
u² - 4uv +3v² = 0
Разложив на множители, получим:
(u - v)(u - 3v) = 0
Отсюда u - v = 0 или u - 3v = 0
u = v или u = 3v
Вернемся к перменной х:
1) log₃(x²+5x-5) = log₃x
x²+5x-5 = x
x²+4x-5 = 0
х₁ = -5 - не принадлежит О.Д.З.
х₂ = 1 - принадлежит О.Д.З.
2) log₃(x²+5x-5) = 3log₃x
x²+5x-5=х³
х³ - х² -5х +5 =0
х²(х - 1) - 5(х - 1) = 0
(х - 1)(х² - 5)=0
х₃ = 1 - принадлежит О.Д.З.
х₄ = -√5 - не принадлежит О.Д.З.
х₅ = √5 - принадлежит О.Д.З.
ответ: √5; 1.
Какие числа являются делителем 57?: 1)1,3,6,19 и 57 2)1,3,19 и 57 3)3,9,19 и 57 4)1,2 и 57
ответ: 2)1,3,19 и 57 так ка на все эти числа число 57 делится без остатка