М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Антон8712
Антон8712
08.09.2020 05:05 •  Алгебра

Решить. 3x²-27=0 18-6x²=0 24-6x²=0 5x²-30=0

👇
Ответ:
amir139
amir139
08.09.2020
1)3х^2-27=0,перебросим 27 с протоивоположным знаком
    3х^2=27
     x^2=27:3
      Х^2=9
       x=корень квадратный из 9=3
2)18-6х^2=0
    -6x^2=-18
      x^2=-18:(-6)
       x^2=3
        x=корень из трёх,так и пишешь не извлекая его
3)24-6х^2=0
    -6x^2=-24
       x^2=-24:(-6)
        x^2=4
         x=2
4)5x^2-30=0
    5x^2=30
     x^2=30:5
      x^2=6
       x=корень из 6
С тебя Устал писать)
4,8(28 оценок)
Открыть все ответы
Ответ:
tanya598
tanya598
08.09.2020

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются:

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются.

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc… ) n = a n · b n · c n …

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

( a m ) n = a m n .

4,4(53 оценок)
Ответ:
dadhhcdgg
dadhhcdgg
08.09.2020

Обратную матрицу найдем по формуле:

A^{-1}=\frac{1}{|A|}*\tilde{A^{T}},

где |A| - определитель матрицы, а \tilde{A^{T}} - транспонированная матрица алгебраических дополнений

|A|=\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]=-2+27-5-3-30-3=-16

Т.к. определитель матрицы не равен 0, то обратная матрица существует.

Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:

m_{11}=\left[\begin{array}{cc}-1&3\\5&1\end{array}\right]=-1-15=-16\\m_{12}=\left[\begin{array}{cc}1&3\\3&1\end{array}\right]=1-9=-8\\m_{13}=\left[\begin{array}{cc}1&-1\\3&5\end{array}\right]=5+3=8

m_{21}=\left[\begin{array}{cc}3&-1\\5&1\end{array}\right]=3+5=8\\m_{22}=\left[\begin{array}{cc}2&-1\\3&1\end{array}\right]=2+3=5\\m_{23}=\left[\begin{array}{cc}2&3\\3&5\end{array}\right]=10-9=1

m_{31}=\left[\begin{array}{cc}3&-1\\-1&3\end{array}\right]=9-1=8\\m_{32}=\left[\begin{array}{cc}2&-1\\1&3\end{array}\right]=6+1=7\\m_{33}=\left[\begin{array}{cc}2&3\\1&-1\end{array}\right]=-2-3=-5

Получили следующую матрицу миноров:

M=\left[\begin{array}{ccc}-16&-8&8\\8&5&1\\8&7&-5\end{array}\right]

Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:

\tilde{A}=\left[\begin{array}{ccc}-16&8&8\\-8&5&-1\\8&-7&-5\end{array}\right]

Следующим шагом получаем транспонированную матрицу алгебраических дополнений:

\tilde{A^T}=\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]

Обратная матрица:

A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]

Проверим, что произведение исходной и обратной матрицы равно единичной:

A*A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]=-\frac{1}{16}*\left[\begin{array}{ccc}-16&0&0\\0&-16&0\\0&0&-16\end{array}\right]=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

4,5(62 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ