В решении.
Объяснение:
Построить график функции
y=2x² - 2
Указать:
1) Область определения функции;
2) Множество значений функции;
3) Те значения x, при которых y > 0.
Приравнять уравнение к нулю и решить как квадратное уравнение.
2x² - 2 = 0
2х² = 2
х² = 2/2
х² = 1
х = ±√1
х = ±1.
График функции - парабола со смещённым центром, пересекает ось Ох в точках (-1; 0) и (1; 0) - нули функции.
Построить график. Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 16 6 0 -2 0 6 16
1. Указать область определения.
Это проекция графика на ось Ох, значения х, при которых функция существует, обозначение D(f) или D(у).
По графику видно, что область определения ничем не ограничена, х может быть любым.
Запись: D(у) = х∈R (значения х - множество всех действительных чисел).
2) Указать множество значений функции.
Множество значений данной функции может быть ограничено только вершиной параболы, обозначение: E(f) или E(у).
Согласно графика, ордината (значение у) вершины параболы = -2, это значение является ограничением, верх параболы не ограничен, поэтому множество значений функции от у= -2 до + бесконечности.
Запись: E(у) = (-2; +∞).
3) Указать значения x, при которых y > 0.
Согласно графика, значения х, при которых у > 0 (график выше оси Ох) от - бесконечности до -1 и от 1 до + бесконечности.
Запись: у > 0 при х∈(-∞; -1)∪(1; +∞).
объяснение:
№5 если в выпуклом четырёхугольнике диагонали равны и равны две противоположные стороны, то по признаку он или прямоугольник, или квадрат, или равнобокая трапеция.
в прямоугольнике и в квадрате диагонали,пересекаясь, делятся пополам, ⇒ ао=до, как половины равных отрезков.
если имеем равнобокую трапецию,то из равенства треугольников, имеющих своими сторонами основание ад и диагонали, получим равные угла между диагоналями и основанием ад ⇒δаод- равнобедренный и ао=од (замечание: чертёж, представленный в неверен, т.к. диагонали преломляются).
№6. т.к. противоположные стороны попарно равны ⇒ четырёхугольник - параллелограмм по признаку ⇒ диагонали точкой пересечения делятся пополам по свойству диагоналей параллелограмма.
x∈(6;∞)log(4)x(x-6)=2
x²-6x=46
x²-6x-16=0
x1+x2=6 U x1*x2=-16
x1=-2∉ОДЗ
x2=8
проверка х=8
log(4)8+log(4)2= 3/2+1/2=4/2=2