М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Тим9775
Тим9775
06.06.2023 07:13 •  Алгебра

Найдите все целые решения неравенства: 2-0,5х^2> =0

👇
Ответ:
krylovadashenk
krylovadashenk
06.06.2023
-0,5 x^{2} +2 \geq 0
x^{2} -1 \leq 0
(x-1)(x+1) \leq 0            +             __              +
нули: -1;1                                -1////////////////1             
ответ: -1 \leq x \leq 1
4,5(17 оценок)
Открыть все ответы
Ответ:

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Пример: 5x+2y=10

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y  Z k0

Утверждение 1.

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно Утверждение 2.

Если m и n уравнения (1) взаимно числа, то это уравнение имеет по крайней мере одно решение.

Утверждение 3.

Если коэффициенты m и n уравнения (1) являются взаимно числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y  Z

Утверждение 4.

Если m и n – взаимно числа, то всякое решение уравнения (2) имеет вид  

5) Домашнее задание. Решить уравнение в целых числах:

9x – 18y = 5

x + y= xy

Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?

Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

Урок 2.

1) Организационный момент

2) Проверка домашнего задания

1) 9x – 18y = 5

НОД (9;18)=9

5 не делится нацело на 9, в целых числах решений нет.

2) x + y= xy

Методом подбора можно найти решение

ответ: (0;0), (2;2)

4,8(38 оценок)
Ответ:
tar02
tar02
06.06.2023

Объяснение:

Ищем точки пересечения с осью ОХ

1) Ветви параболы направлены вверх, вершина x₀=-b/2а=6/4=1,5

точки пересечения с осью ОХ:

2x² - 6x + 4=0;

D=36-4*4*2=4; x₁=(6-2)/4;x₁=1;x₂=(6+2)/4;x₂=2

x∈(1;2)

2) Ветви  параболы направлены вниз ,вершина x₀=-b/2а=5/2=2,5

точки пересечения с осью ОХ:

x² -5x + 6=0; по т. Виета x₁=2; x₂=3

х∈(-∞;2)∪(3;∞)

3)y = x² + 4x + 4; y=(х+2)²

y=(х+2)²=0; х=-2. Пересечение в одной точке и это же вершина

х∈∅

4) Ветви параболы вниз. Вершина x₀=-b/2а=2,6/2=1,3

точки пересечения с осью ОХ: x² + 2,6x + 1,6=0;

По т. Виета  x₁=-1,6; x₂=-1.

х∈(-∞;-1,6)∪(-1;∞)


Используя график функции, найдите множество значений переменной, при которых принимает отрицательные
Используя график функции, найдите множество значений переменной, при которых принимает отрицательные
Используя график функции, найдите множество значений переменной, при которых принимает отрицательные
Используя график функции, найдите множество значений переменной, при которых принимает отрицательные
4,6(76 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ