Укажите позволяющий установить взаимно однозначное соответствие: а) между множеством четных натуральных чисел и множеством нечетных натуральных чисел; б) множеством квадратов натуральных чисел и множеством кубов натуральных чисел.
Можно заметить, что если от любого элемента множества А отнять 1, то получится элемент множества B.
Тогда, если x - четное натуральное число, y - нечетное натуральное число, то:
б)
Множество квадратов натуральных чисел:
Множество кубов натуральных чисел:
Можно заметить, что если из любого элемента множества C извлечь квадратный корень и получившееся число возвести в куб, то получится элемент множества D.
Тогда, если x - квадрат натурального числа, y - куб натурального числа, то:
1) Пусть число sqrt(2 + sqrt(2)) — рациональное. Тогда и его квадрат 2 + sqrt(2) рационален. Но это не так, 2 + sqrt(2) — сумма рационального и иррационального чисел. Противоречие.
(Доказательство иррациональности числа sqrt(2): пусть sqrt(2) = m/n, m/n - несократимая дробь, m,n — натуральные числа. Возводим в квадрат, домножаем на n^2, получаем m^2 = 2n^2, откуда m — чётное. Пусть m = 2M. Подставляем, сокращаем на 2, получаем n^2 = 2M^2, откуда n — тоже чётное, что противоречит предположению о несократимости дроби m/n)
2) Пусть число sqrt(5) + sqrt(2) - 1 рациональное, тогда и sqrt(5) + sqrt(2) тоже рациональное, и (sqrt(5) + sqrt(2))^2 = 5 + 2 + 2sqrt(10) = 7 + 2 sqrt(10) рациональное, тогда и sqrt(10) тоже рациональное. Но sqrt(10) — иррациональное, противоречие. Значит, sqrt(5) + sqrt(2) - 1 — иррациональное.
Иррациональность sqrt(10) доказывается аналогично: sqrt(10) = m/n, m^2 = 10n^2. Дальше можно, наример, точно так же, как и в примере выше, доказать, что m и n должны быть чётными.
а)
Множество четных натуральных чисел:
Множество нечетных натуральных чисел:
Можно заметить, что если от любого элемента множества А отнять 1, то получится элемент множества B.
Тогда, если x - четное натуральное число, y - нечетное натуральное число, то:
б)
Множество квадратов натуральных чисел:
Множество кубов натуральных чисел:
Можно заметить, что если из любого элемента множества C извлечь квадратный корень и получившееся число возвести в куб, то получится элемент множества D.
Тогда, если x - квадрат натурального числа, y - куб натурального числа, то: