Найдем решения неравенства Ix-5I≤2; -2≤х-6≤2; 4≤х≤8- отрезок длиной 4
Найдем решения неравенства Ix-6I≥1
x-6≥1; х≥7 или х-6≤-1; х≤5; т.е. х∈(-∞;5]∪[7;8]
Из отрезка [4;8] выпадает только отрезок[5;7] длины 2
Используя геометрическое определение вероятности, найдем искомую вероятность, длина решений второго неравенства, которое находится в первом, составляет 2, это сумма длин отрезков [4;5] и [7;8], т.е. число благоприятствующих исходов равно 2, а общее число исходов 4, значит, вероятность равна 2/4=0.5
1)cos a = -0.5 в двух точках на единичной окружности , при а=2pi/3 и -2p/3
Учтем что период косинуса 2 пи, поэтому
pi(10x-7)/9=2pi/3+2pik ; (10x-7)/9=2/3+2k; 10x/9=2/3+7/9+2k;
x=9(13/9+2k)/10; x=1.3+1.8k; k-целое
наибольший отрицательный корень при к=-1
x1=1.3-1.8=-0.5
pi(10x-7)/9=-2pi/3+2pik; (10x-7)/9=-2/3+2k; 10x/9=-2/3+7/9+2k;
x=9(1/9+2k)/10; x=0.1+1.8k; k-целое
наибольшее из отрицательных при к=-1
x2=0.1-1.8=-1.7-меньше х1-не подходит
ответ x=-0.5
2)sin a=-√2/2 при a=-pi/4 и -3pi/4
такой же период 2пи
pi(2x-5)/2=-pi/4+2pik;(2x-5)/2=-1/4+2k; x=-1/4+5/2+2k; x1=9/4+2k=2.25+2k
наибольшее отрицательное при к=-2
x1=2.25-4=-1.75
pi(2x-5)/2=-3pi/4+2pik;(2x-5)/2=-3/4+2k; x=-3/4+5/2+2k; x2=7/4+2k=1.75+2k
наибольшее отрицательное при к=-1
x2=1.75-1=-0.25-больше х1, подходит
ответ x=-9.25
если
9/(4,5*2,5)=4/5=0,8