М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
habital
habital
05.05.2021 04:18 •  Алгебра

Смешали 40г 20% -го и 60г 30% растворов соли. определите процентное содержание соли в полученном

👇
Ответ:
lawrence02
lawrence02
05.05.2021

Смешали 40г 20% -го и 60г 30% растворов соли. получили 100г х% раствора

0,2*40 + 0,3*60=100х

8+18=100х

26=100х

х=0,26

получили раствор 100г 26%-ого соляного р-ра



4,8(20 оценок)
Ответ:
mary309
mary309
05.05.2021

Из 40 + 60 = 100 г. раствора соль составляет 

(40 * 20 + 60 * 30) / 100 = 2600 / 100 = 26 г, поэтому концентрация раствора

26 / 100 * 100% = 26%

4,5(8 оценок)
Открыть все ответы
Ответ:
JulianaBrolol
JulianaBrolol
05.05.2021

а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.

б). Да, 123...9899 делится на 9.

Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.

Цифра 0:

10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.

Цифра 1:

1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.

Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).

Теперь нужно узнать, делится ли число 1234..9899 на 9.

Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.

Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.

Для этого найдем искомую сумму по формуле арифметической прогрессии:

S = \frac{(a_1+a_n)n}{2} = \frac{(1+99)*99}{2} = \frac{9900}{2} = 4950.

4950:9=550.

Так как получилось разделить нацело, то 1234...9899 делится на 9.

4,8(59 оценок)
Ответ:
AgentElizabeth007
AgentElizabeth007
05.05.2021

ответ:1) Задание

Дана функция 

найти промежутки возрастания и убывания

По признаку возрастания и убывания функции на интервале:

если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;

 если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.

Найдем производную данной функции

найдем точки экстремума, точки в которых производная равна нулю

отметим точки на числовой прямой и проверим знак производной на промежутках

___+-+__

       0             2

Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает

на промежутке (0;2) функция убывает

точки х=0 точка минимума, х=2 точка максимума

Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].

Заметим, что х=2 точка максимума не входит в данный промежуток,

а х=0 принадлежит данному промежутку

Проверим значение функции в точке х=0 и на концах отрезка

Значит наибольшее значение функции на отрезке  [-2;1]

в точке х=0 и у(0)=1

значит наименьшее значение функции на отрезке [-2;1]

в точке х=-2 и у(-2)= -19

2. Напишите уравнение к касательной к графику функции

f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.

Уравнение касательной имеет вид

найдем производную данной функции

найдем значение функции и производной в точке х=1

подставим значения в уравнение касательной

Объяснение:

4,8(27 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ