Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
1 задание.
1)три целых пять двенадцатых(просто решаешь пример, все приводишь к общему знаменателю,и решаешь, сосчитать на калькуляторе)
2)три целых одиннадцать двадцать четвертых(все тоже самое)
2 задание.
1)x=-5,2(x=-2.8-2.4)
2)y=-1,76(y=18.24-20)
3)z=десять целых семнадцать двадцать седьмых(z=шесть целых пять девятых+ четыре целых две двадцать седьмых)(общий знаменатель 27 и считаешь.)
3 задание.
расстояние между точками ищеться их разностью.
расстояние между А и Б будет равно -5,2-(-1,8)=-5,2+1,8=-3,4(расстояние не может быть отрицательных, так что просто 3,4)
Расстояние между точками С и Д будет равно -две третьих-пять девятых(общий знаменатель 9)=-шесть девятых-пять девятых=-одиннадцать девятых(расстояние не может быть отрицательных, так что просто одиннадцать девятых=одна целая две девятых)
тут больше писать нечего, это самое расширеное решение
так как
уравнение принимает вид:
Замена переменной
t >0
Решаем квадратное уравнение:
t²-24t-25=0
D=(-24)²-4·(-25)=576+100=676=26²
t=(24-26)/2=-1 не или t=(24+26)/2=25
удовлетворяет условию
t>0
x=2
ответ. 2
Выносим за скобки 2 в меньшей степени:
Показательная функция с основанием 2 строго возрастающая, каждое свое значение принимает только в одной точке, поэтому если значения функции равны, то и аргументы равны:
х-3=2
х=5
ответ. 5