* * * * * * * * * * * * * * * * * * * * *
При каком значении параметра a уравнение имеет ровно 2 различных решения: (x + 4/x)² + (a - 4)(x + 4/x) - 2a²+a +3 =0
ответ: a ∈ ( - 5 ; - 0,5 ) ∪ (3 ; 3,5 ).
Объяснение: Частный случай (для двух неотрицательных чисел) неравенства Коши: (a+b)/2 ≥ √ab . || сред. арифм. ≥ ср. геом. ||
Поэтому: x + 4/x ≥ 4 ,если x >0 или x + 4/x ≤ - 4 ,если x < 0 .
* * * если x < 0: ( (-x) + ( -4/x) ) ≥ √( ( -x)*(-4/x) ) = 2 ⇔ x + 4/x ≤ - 4 * * *
* * * x + 4/x ∉ ( - 4 ; 4 ) * * *
(x + 4/x)² - (4 -a)(x + 4/x) - 2a²+a +3 =0
Это уравнение квадратное относительно x + 4/x ; после замена ( для удобства ) x + 4/x = t , t ∉ ( - 4 ; 4 ) получаем :
t² - (4 - a)t -2a²+a +3 =0 ,
D =(4-a)²-4(-2a²+a +3)=16 -8a +a²+8a²-4a -12 =9a²-12a+4 =(3a -2)² ≥ 0
t₁= (4-a+3a -2)/2 =a+1
t₂ =(4-a -3a +2)/2 =3 -2a.
Если D = 3a -2 = 0 ⇔ a = 2/3 ⇒ t₁ =t₂ = 5/3 ∈ ( - 4; 4 ) → исходное
уравнение не имеет корней .
Исходное уравнение будет имеет ровно 2 различных решения
Система неравенств ( пишу в одной строке, разделены запятой )
а) { a+1 > 4 ; - 4 < 3 -2a < 4 .
⇔ { a > 3 ; - 4 < 2a -3 < 4.⇔ {a > 3 ; - 0,5 < a < 3,5. ⇔
⇒ a ∈ (3 ; 3,5 ).
(3)
( - 0,5)(3,5)
б) { 3 -2a > 4 ; - 4 < a+1 < 4 .
⇔{ 2a - 3 < - 4 ; -4 - 1 < a < 4 -1 .⇔ { a< -0,5 ; -5 < a < 3.
⇒ a ∈ ( -5 ; -0,5 ).
( - 0.5)
( -5)(3)
* * * * * * * * * * * * * * * * * * * * *
в) { a+1 < - 4 ; - 4 < 3 -2a < 4 .
⇔ { a+1 < - 4 ; - 4 < 2a -3 < 4 . ⇔ { a+1 < - 4 ; 1 < 2a+2< 9. ⇒a ∉∅.
{ a+1 < - 4 ; 0,5 < a+1 < 4,5 . ⇒ a ∉∅.
г) { 3 -2a < - 4 ; - 4 < a+1 < 4 .
⇔{ 2a-3 > 4 ; -4 -1 < a < 4 -1 .⇔{ a> 3,5 ; -5 < a < 3 . ⇒a ∉∅
При каких значениях параметра уравнение (x²-(4a-3)x -12a ) / (x²-1) =0 имеет 1 корень .
Решение : (x² - (4a - 3)x - 12a ) / (x² - 1 ) = 0 ⇔
{ x²-(4a-3)x -12a = 0 ;
{x² - 1 ≠ 0 . || ОДЗ ||
x²- 1≠ 0⇔x ≠ ± 1 * * * (x+1)(x-1) ≠0⇔ x+1≠0 и x-1 ≠0 ⇔ x ≠ -1 и x ≠ 1 * * *
x² - (4a - 3)x - 12a = 0
- - -
Если a =0 * * * - 12a = 0 * * *
x²-(4a-3)x-12a =0 ⇔x² +3x=0⇔(x+3)x=0⇒x₁ = -3,x₂= 0 два корня
- - -
D=(4a-3)²- 4*1*(-12a) =16a²-24a +9-4*1*(-24a)=16a²+24a+9 = (4a+3)² ≥0
Если D = 0 ⇔ 4a+3=0⇔ a = - 3/4 x₁=x₂=(4a-3)/2 = - 3 ( кратный корень)
По уставу ЕГЭ _ одно решение
звучит так: Квадратное уравнение имеет ОДИН корень, если D=0
* * * a = - 3/4 ⇒x²- (4a-3)x -12a =0 ⇔ x²+6x+9 =0 ⇔(x+3)² = 0 ⇒x = -3 * * *
x₁,₂ = (4a-3 ±(4a+3) ) /2 ;
x₁ =(4a-3- 4a- 3) /2 = -3 ; ясно x₁ = -3 решение ( ∈ ОДЗ )
* * * уже обеспечен один корень * * *
x₂=(4a-3 +4a+3)/2 = 4a
Для того чтобы уравнение имел только один корень x₂=4a не должно быть корнем , т.е. 4a = - 1 или 4a = 1 . a = - 1/4 или a = 1 /4
* * * [ 4a = - 1 ; 4a = 1 . ( совокупность уравнений ) * * *
ответ: - 3/4 -1/4 ; 1/4 . * * * -0,75 ; - 0,25 ;0,25 * * *
* * * P.S. Квадратное уравнение ax²+bx+c =0 ⇔a(x+b/2a)²- D/4a =0 ;a≠0 .
если D = 0 , то ( x+b/2a)² = 0 ⇒ x₁ = x₂= - b/2a_двукратный корень * * *
5^x*(1-14/5+3*5)=66
5^x=66/(1-14/5+15)
5^x=66/(16-2 4/5)
5^x=66/(13 1/5)
5^x=66/(66/5)
5^x=66*5/66
5^x=5^1
x=1