Есть известное равенство Log (по осн а) b = log (по осн c) b / log (по осн c) a, причём с может быть любым, но не равно 0 или 1. Пусть будет с = 3. log3 (x) + log9 (x) + log27 (x) = log3 (x)/log3 (3) + log3 (x)/log3 (9) + log3 (x)/log3 (27) = 11/12 log3 (x)/1 + log3 (x)/2 + log3 (x)/3 = (6log3 (x) + 3log3 (x) + 2log3 (x))/6 = 11/12 11log3 (х)/6 =11/12 log3 (x) = 1/2 = 3^(1/2) = V(3)
1) пусть х км составляет весь путь велосипедиста. 2) тогда первую половину пути х/2 велосипедист проехал со скоростью х/2 : 3 = х : 6 км/ч. 3) вторую половину пути х/2 велосипедист проехал со скоростью х/2 : 2,5 = х : 5 км/ч. 4) по условию на втором участке скорость велосипедиста была больше на 3 км/ч, чем на первом, тогда можно записать выражение: х : 5 - х : 6 = 3. 5) решаем уравнение: х : 5 - х : 6 = 3, (6х - 5х)/30 = 3, х/30 = 3, х = 3 * 30, х = 90. 6) значит, х = 90 км проехал велосипедист. ответ: 90 км.
Log (по осн а) b = log (по осн c) b / log (по осн c) a, причём с может быть любым, но не равно 0 или 1.
Пусть будет с = 3.
log3 (x) + log9 (x) + log27 (x) = log3 (x)/log3 (3) + log3 (x)/log3 (9) + log3 (x)/log3 (27) = 11/12
log3 (x)/1 + log3 (x)/2 + log3 (x)/3 = (6log3 (x) + 3log3 (x) + 2log3 (x))/6 = 11/12
11log3 (х)/6 =11/12
log3 (x) = 1/2
= 3^(1/2) = V(3)