b=+-2
Объяснение:
Пусть x1=a-один из корней уравнения, тогда второй корень x2=0,4 *a (40% от первого)
Тогда ,по теореме Виета :сумма корней равна второму члену взятому с противоположным знаком .
x1+x2=a+0,4*a =4,2b^2 -1,4
1,4*a=4,2b^2-1,4 (делим на 1,4 обе части уравнения)
1) a=3b^2-1 →a^2=(3b^2-1)^2= 9b^4-6b^2+1
Так же, по теореме Виета: произведение корней равно последнему члену.
x1*x2=a*0,4a=11,6b^2+2
0,4*a^2=11,6*b^2+2 (делим на 0,4 обе части уравнения)
2)a^2=29b^2+5
Подставляя 1 в 2 имеем:
9b^4-6b^2+1=29b^2+5
9b^4-35b^2-4=0 (биквадратное уравнение)
b^2=t>=0
9t^2 -35t-4=0
D=(-35)^2 - 4*9*(-4) =1225 +144=1369
√D=√1369=37
t=(35+-37)/18
t1=(35+37)/18=72/18=4
t2=(35-37)/18 <0 (не подходит)
b^2=4
b=+-2
Cделаем проверку: (b^2=4)
x^2 -(4,2*4-1,4)*x +11.6*4 +2=0
x^2-15,4*x +48,4=0
По теореме Виета:
a+0,4a=15,4
1,4a=15,4
a=15,4/1,4=11
x1=11 x2=0,4*11=4,4
x1*x2=11*4,4=48,4 (верно)
ответ: b=+-2
у = kx+b
A(5; 3)
B(-3; -1)
Подставим координаты точек А и В в уравнение прямой вместо х и у, но точек две, поэтому уравнений получим тоже два с двумя неизвестными k и b
Составим систему уравнений и решим её:
{5k+b=3
{-3k+b=-1
вычтем из верхнего уравнения нижнее, получим
8k+0=4
k = 2
подставим k=2 в любое уравнение системы, например, в верхнее, получим:
5*2 + b =3
10+b = 3
b = 7
Запишем уравнение прямой:
у = 2х+7, которая проходит через данные точки А и В.
Далее, просили уравнение прямой, которая
1) параллельная данной, а значит её коэффициент k одинаковые, т е k = 2 и
2) пересекает ось абсцисс в точке (-10; 0)
0 = 2*(-10) + b
0 = -20 + b
b = 20
y = kx+b
k= 2, b= 20
y = 2x+20 - искомая формула прямой
В ответах нужно написать ещё перед цифрами знак "плюс/минус"