Имеются три числа. известно, что произведение первого числа на второе оканчивается на ноль, а произведение первого числа на третье и произведение второго числа на третье оканчиваются не на ноль. может ли сумма всех трёх чисел оканчиваться на 3
Объясняю по требованию). 5^(1-x) = 125 Мы представляем 125 в виде 5^3, так как 5*5*5 = 25*5 = 125 5^(1-x) = 5^3 А теперь мы видим, что в нашем показательном равенстве -(показательная функция - это y=a^x, где a - основание степени, а x - это показатель степени) - основания равны - значит и степени должны быть равны. Поэтому мы "сбрасываем" основания и получаем: 1- x = 3 В итоге: имеем линейное уравнение, которое решается переносом x в правую часть, а 3 в левую (то есть вычитаем 3 из левой и правой частей, затем прибавляем 2 к обеим частям. В заключение умножаем обе части на (-1)) x = -2
1x * 2x = 100
, тогда 2х*3х=11
1х*3х=12
=> сумма числе составляет 123 , и отсюда следует , что сумма чисел может заканчиваться на 3