А) 3х -2у =8 ⇒ 2у = 3х -8 ⇒ у = 1,5 х -4 В этом уравнении угловой коэффициент к = 1,5. Любое уравнение , в котором к≠ 1,5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) б) -5х +4у =3 ⇒ 4у = 3х -8 ⇒ у = 5 х +3 В этом уравнении угловой коэффициент к = 5. Любое уравнение , в котором к≠ 5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) в) -3х -7 у =2 ⇒ 7у = -3х - 2 ⇒ у = -3/7 х - 2/7 В этом уравнении угловой коэффициент к = -3/7 Любое уравнение , в котором к≠ -3/7 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) г)5х + 6у = 9 ⇒ 6у = -5х - 9 ⇒ у = -5/6 х - 9/6 В этом уравнении угловой коэффициент к =-5/6. Любое уравнение , в котором к≠ -5/6 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.)
Руслану нужно решить 420 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за перый день Руслан решил 13 задач. Определите, сколько задач решил Руслан в последний день, если со всеми задачами он справился за 12 дней.
Решение: Так как Руслан ежедневно решает на одно и тоже количество задач больше по сравнению с предыдущим днем, то последовательность решенных задач является арифметической прогрессией. Поэтому можно записать, что первый член арифметической прогрессии равен 13 или a1=13. Последний член равен an. Сумма прогрессии равна 420 или Sn = 420. Количество членов прогрессии равно количеству дней для решения n=12. Запишем формулу для определения суммы арифметической прогрессии Sn = (a1+an)n/2 Выразим из формулы an an = 2Sn/n - a1 Подставим известные значения an = 2*420/12 - 13 = 57 Поэтому в последний день Руслан решил 57 задач. ответ: 57
an =a1+(n-1)d или d =(an-a1)/(n-1) =(57-13)/(12-1) =44/11=4 Запишем эту последовательность 13;17;21;25;29;33;37;41;45;49;53;57 Сумма этих чисел равна 13+17+21+25+29+33+37+41+45+49+53+57= 420
2) ху³+5х²у²-3х²у= ху(у²+5ху-3х)
3) -3а²у-12у²=-3у(а²+4у)
4) 6с²х³-4с³х²+2с²х²= 2с²х²( 3х-2с)