1)а_n=3n-15
2)a_n+1=a_n+n+1
3)a_n=200n-185
Объяснение:
1.
Последовательность являет
ся арифметической прогрес
сией:
а_n=а_1+d(n-1)
По условию а_1=-12
d=a_2-a_1=(-9)-(-12)=
=-9+12=3
Подставляем а_1 и d
вформулу для а_n :
a_n=-12+3(n-1)=
=-12+3n-3=
=3n-15
Рекурентная формула
a_n=-13+3n-3
2.
Закономерность:
Каждый член последователь
ности получен прибавлением
к предыдущему номера после
дующего члена:
a_n+1=a_n+(n+1)=a_n+n+1
3.
Последовательность являет
ся арифметической прогрес
сией:
а_1=15
d=a_2-a_1=215-15=200
a_n=a_1+d(n-1)
a_n=15+200(n-1)=
=15+200n-200=200n-185
Рекурентная формула
a_n=200n-185.
цифры не повторяются;
В задании говорится о четырехзначных числах, т.е. множества из четырех чисел отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений Amn=n!(n−m)!, где n=6 - общее количество чисел, m=4 - число чисел в выборке.
Находим:
d1=A46=6!(6−4)!=3∗4∗5∗6=360
При этом нужно учесть, что числа не могут начинаться с 0, т.е. это количество чисел (начинающихся с 0) нужно вычесть из полученного количества. Первая цифра этих четырехзначных чисел известна - 0, а остальное количество чисел находим по формуле Размещения, где n=5, m=3, т.к. одна цифра (0) уже использована
d2=5!2!=3∗4∗5=60
Получили, что количество четырехзначных чисел равно D=d1−d2=360−60=300
б) цифры могут повторяться;
В задании говорится о четырех значных числах, цифры которых могут повторятся, множества из четырех чисел с повторениями отличаются как составом чисел, так и их последовательностью, т.е. количество чисел находим по формуле Размещений с повторениями (Amn)сповторениями=nm, где n=6 - общее количество чисел, m=4 - число чисел в выборке при этом нужно учесть, что на первой позиции может быть любое число кроме 0, т.е. возможная выборка - 5 чисел, поэтому количество возможных чисел можно выразить так
D=5∗6∗6∗6=5∗63=1080
352:8=44
ответ 3 велосипедист ехал 44 км в час