Для начала, можно посмотреть несколько последовательных степеней двойки: 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 Как видим, последняя цифра меняется так: 2, 4, 8, 6. А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр. Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты: 1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени) 2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2 3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4 4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
Возьмем за х период разложения консервной банки ,тогда (х+10) период разложения фильтра от сигареты с сзданием материалов ,разложение фильтра уменьшилось в 2 раза (х+10)/2 и разница между периодами разложения будет 32 года (х+10) - (х+10)/2=32 2х+20-х-10=64 х=54 года разлагается консервная банка 54+10=64 года разлагался фильтр с созданием материалов ,разлагающихся под воздействием света ,разложение фильтра уменьшилось в 2 раза , 64:2=32 года теперь разлагается фильтр. Достижения науки!
решений нет